001一階微分方程

2021-02-19 燕星閣數學社


定義

(1)變量可分離的微分方程若由

(2)齊次方程若由

解法:

 (3)一階線性方程

若由

解法

  (4)伯努利方程若由

解法

  (5)全微分方程若由

解法

(1)令 則

例題

變量可分離的微分方程

例 1 設曲線

解 設曲線

兩邊求導,得

於是

於是所求曲線方程為

例2

積分得

齊次微分方程

例 3

設函數

試求

兩邊對

改寫為

一階線性微分方程

例 4

求一連接

解 設曲線方程為

兩邊關於

故該方程為全微分方程,解之得通解

模擬練習題

(1)

(2)

(3)

(4)

相關焦點

  • 一階線性微分方程
    做數學題有三種難:有一種難叫我想不起來了,有一種難叫我知道不會算,還沒有一種難就是我壓根不知道;一階線性微分方程就是最後一種,是不是很多小夥伴有這種感覺!別激動這個玩意,屬於大學微積分的知識,數學招教考試中會考嗎?菏澤的小夥伴要注意嘍!趕快學起來吧!一階線性線性微分方程:形如
  • 微分方程05 一階線性方程01
    叫做一階線性微分方程    是一階線性微分方程 不是一階線性微分方程不同形式的微分方程解法不會像求導函數那樣具有有限固定的法則可依據,很多類微分方程問題都是一個相對獨立的孤島,歷經無數數學家的努力,很多微分方程或其中的某些特殊形式獲得了解析解, 而還有一些方程在現代計算機的幫助下獲得良好的數值解法。
  • 常微分方程中的重要方程:黎卡提方程(一階二次非線性微分方程)
    前面我們了解了什麼是一階線性微分方程,可分離變量微分方程,以及齊次微分方程,本篇講升上一個高度,一階微分方程中的二次微分方程義大利數學家在17世紀提出了著名的「黎卡提方程」,這個方程看上去挺簡單的,但分析起來相當複雜
  • 微分方程06 一階線性方程02
    一階線性微分方程有標準形式:
  • 了解高階線性微分方程——初識二階線性微分方程
    題目在小編的上一篇文章:我要把你變弱——可降階的高階微分方程。做這部分的題目,首先要分清楚每道題是三種類型中的哪一種,然後才可下手做題。小編是這樣判斷的,首先看看方程中有沒有y,如果有y,那麼肯定是第三類,如果沒有,那就是第一或者第二類。
  • 《常見一階微分方程》類型及其一般求解思路與步驟
    一、《高等數學》一階微分方程分類:第一類:可分離變量的微分方程及其分離變量的求解方法,包括齊次微分方程(換元法)。 第二類:一階線性微分方程,其中齊次線性微分方程的求解歸結為可分離變量的微分方程;而非齊次線性微分方程基於常數變易法,或稱為待定函數法,直接得到非齊次線性微分方程的通解或者基於線性微分方程解的結構求得其一個特解來求通解:非齊次線性微分方程的特解
  • 習題解答——一階微分方程及其解法(1)
    本節重點:可分離微分方程的求解;齊次微分方程的求解知識點回顧1、可分離變量的微分方程若一階微分方程可化為則上述方程稱為可分離變量的微分方程。可分離變量微分方程的求解方法:分離變量法。則上述方程稱為齊次微分方程。齊次微分方程的解法:變量代換法。具體地,令
  • 我要把你變弱——可降階的高階微分方程
    1.這種題都是把y的最高次冪除了,然後列出一階線性微分方程的標準形式即可,其實小編感覺這部分的題主旨就一個字——「湊」,把它們湊成一階線性微分方程,當中無非就是變量替換之類的。還有就是這裡的積分要用到分部積分法,比較繁瑣。2.這裡也是一樣的。
  • 【每日數學】一階線性微分方程
    22考研||微分方程的幾個核心概念22考研||利用微元法求旋轉體、平行截面面積已知的立體的體積22考研||什麼是微元法?22考研||齊次微分方程哈嘍,各位小夥伴們歡迎大家來到袁老師『每日知識點專題』我要你每天都學習一個知識點『每日知識點專題』來自於袁老師新編22考研數學教輔核心資料,每天講解一個考研數學知識點,並附上題目講解,希望以這樣的方式,讓大家高校化,靈活化隨時隨地學習,滿足各類群體考生的需求,充分利用碎片化時間
  • 微分方程4,可降階的高階,三缺一類型
    微分方程4,可降階的高階
  • 微分方程5,高階階數由來
    微分方程5,高階階數由來
  • 2018考研數學複習:一階線性微分方程的三種通解求法
    一階線性微分方程是2018考研數學考試中微分方程的主要內容之一,是一個常考點。一階線性微分方程分為一階齊次線性微分方程和一階非齊次線性微分方程,它們的求解我們可以用通解公式直接計算,但有些同學對其通解公式的推導不太理解,尤其是對一階非齊次線性微分方程中使用的常數變易法感覺很難想像,為了幫助大家更好地理解這一點,下面對一階齊次和非齊次線性微分方程的通解各給出三種不同的解法,供各位考生和其他感興趣的老師及學生參考。
  • 微分方程重點一:常係數齊次線性微分方程
    小編也說過,在考試中,那一節不是重點。微分方程前面的都是一些基礎,如果是一些和其他題型結合在一起的題目的話,可能會考前面的微分方程內容,比如說求知道函數的全微分,讓求原函數這類的。但是如果微分方程考大題的話,就是考二階常係數非齊次線性微分方程了。之前講的微分方程解的結構是基礎,主要是為了說明做題時我們需要求什麼。
  • (數一)二階常係數線性微分方程
    前言:這一部分,我覺得應該是專接本裡最難的吧,在學校上高數課的時候就聽高數老師說這一部分特別難,對於應付期末考試而言就不講了
  • 求解微分方程
    微分方程中出現的未知函數的最高階導數的階數稱為微分方程的階。按照不同的分類標準,微分方程可以分為線性或非線性,齊次或非齊次。一、一階微分方程一階微分方程具有如下一般形式:這個方程稱為一階齊次線性微分方程。一階齊次線性微分方程是可分離變量的方程,由上面的方法可以得到方程的通解為
  • 微分方程篇:為你構建微分方程框架
    以下是小編自己構建的微分方程這一章的知識網絡,帶*的表示選修(即考的概率不大)。函數是客觀事物的內部聯繫在數量方面的反映,利用函數關係又可以對事物的規律性進行研究。因此如何尋找函數關係,在實踐中具有重要意義。在許多問題中由於條件受限,有時只能找到要找的函數及其導數的關係式,這樣的關係式稱為微分方程。
  • 2017考研數學:n階線性微分方程的通解公式分析
    微分方程是高等數學中的一個重要章節,在實際中也有廣泛的應用,對於考研數學來講更是每年必考。關於線性微分方程的通解公式,在一般高等數學教材中只是簡單地做了些介紹,並沒有進行詳細的分析證明,因此有很多同學對其感到有些困惑,對其含義和作用也不能很好理解,為了幫助2017考研學子消除這些困惑,本文對n階線性微分方程的通解公式做些分析和證明,供同學參考。
  • 簡諧振動二階微分方程求解過程
    很多同學對於簡諧振動的表達形式,尤其是關於角頻率的定義,與振動的二次微分方程的關係不是很清楚。
  • 如何求二階微分方程y的二階導+2y的一階導+y=7sinx的通解
    解:該微分方程的特徵方程為:r^2+2r+1=0,(r+1)^2=0,r1,2=-1,微分方程的特徵根相等。由於P(x)=7sinx,則該二階常係數非齊次線性微分方程通解形式可設特解y1=asinx+bcosx,則:y1'=acosx-bsinx,y1"=-asinx-bcosx,代入得:y1"+2y1'+y1=-asinx-bcosx+2acosx-2bsinx+asinx+bcosx=-2bsinx+2acosx=7sinx
  • 微分方程重點二:常係數非齊次線性微分方程
    小編在之前的文章:微分方程重點一中講了常係數齊次線性微分方程的內容。那是微分方程難點的一半,接下來的內容是另外一半。讓我們在講解之前,先來對一下答案。題目在微分方程重點一:常係數齊次線性微分方程中。4.這裡值得一提的是有四階導數,還是按照以前的基本定理做就可以了,把分別求出來的解加在一起。5.按照步驟做,最後按照給出的條件列式子。就是這裡給出的一階導數條件值也是要求出一階導數,然後再代入。6.和第五題一樣,還是按照步驟做,然後再代入條件即可得出答案。