2014年12月4日訊 /生物谷BIOON/ --萊斯大學和德克薩斯大學MD安德森癌症中心一項新的研究顯示了卵巢癌如何利用腹部組織來源的一種特定類型的成體幹細胞來推動其增長。這項研究在線發表在上周的Cancer Research雜誌上,該研究提出了一種新的治療方式來針對侵襲性卵巢癌,即通過破壞促使癌細胞茁壯成長的代謝過程。
這種特定類型幹細胞被稱為大網膜脂肪基質細胞或O-ASCs,已經與卵巢腫瘤的增殖,遷移和耐藥性有關,但此類幹細胞的確切作用是未知的,研究論文首席研究員Rice's Deepak Nagrath說:我們發現,O-ASCs供給癌細胞產生一氧化氮所需要的代謝物,一氧化氮是已知增加血流量的重要信號分子。癌症研究人員在80年前發現癌細胞與正常細胞之間的代謝差異。幾十年來,科學家相信「Warburg效應」適用於所有的癌症,但Nagrath實驗室研究和其他人已經發現,每一種類型的癌症都有自己的代謝特徵。
例如,在五月發表的一項研究中,Nagrath及其同事發現高度侵襲性卵巢癌細胞是穀氨醯胺依賴性的,在實驗室中剝奪細胞穀氨醯胺的外部來源,一些實驗性藥物能有效殺死晚期卵巢癌細胞。
癌細胞利用腹部幹細胞來推動增長和轉移。最新研究表明,一種新的方式即通過破壞使他們能夠茁壯成長的代謝過程,來靶向治療惡性卵巢癌。在新的研究中,合著者Bahar Salimian進行了一系列實驗來研究O-ASCs和卵巢癌細胞之間複雜的相互作用。O-ASCs是一類在網膜中發現的成體幹細胞,網膜是小腹中的組織,其是卵巢癌最常見的轉移部位之一。
當我們在實驗室共同培養兩種細胞類型(癌細胞和O-ASCs),我們發現,癌細胞會利用幹細胞分泌的精氨酸,並且癌細胞通過燃燒精氨酸,來釋放瓜氨酸,這又造成了幹細胞產生更多精氨酸。
我們的研究結果表明,O-ASCs通過增加一氧化氮水平,上調糖酵解和降低腫瘤細胞的氧化應激,Nagrath說:值得注意的是,我們還發現在癌細胞中O-ASC介導的耐藥可以通過改變癌症所依賴的一氧化氮平衡來逆轉。Nagrath說一種破壞幹細胞和腫瘤細胞之間信號的雞尾酒療法,可能破壞卵巢癌依靠的以推動其轉移性增長的代謝平衡。(生物谷Bioon.com)
本文系生物谷原創編譯整理,歡迎轉載!轉載請註明來源並附原文連結。謝謝!
Nitric oxide mediates metabolic coupling of omentum-derived adipose to ovarian and endometrial cancer cells
Bahar Salimian,et al.
Omental adipose stromal cells (O-ASCs) are multipotent population of mesenchymal stem cells contained in the omentum tissue which promote endometrial and ovarian tumor proliferation, migration and drug resistance. The mechanistic underpinnings of O-ASCs role in tumor progression and growth are unclear. Here, we propose a novel nitric oxide (NO) mediated metabolic coupling between O-ASCs and gynecological cancer cells in which O-ASCs support NO homeostasis in malignant cells. NO is synthesized endogenously by the conversion of L-arginine into citrulline through nitric oxide synthase (NOS). Through arginine depletion in the media using L-arginase and NOS inhibition in cancer cells using L-NAME, we demonstrate that patient derived O-ASCs increase NO levels in ovarian and endometrial cancer cells and promote proliferation in these cells. O-ASCs and cancer cell cocultures revealed that cancer cells utilize O-ASCs-secreted arginine and in turn secrete citrulline in the microenvironment. Interestingly, citrulline increased adipogenesis potential of the O-ASCs. Furthermore, we found that O-ASCs increased NO synthesis in cancer cells which led to decrease in mitochondrial respiration in these cells. Our findings suggest that O-ASCs upregulate glycolysis and reduce oxidative stress in cancer cells by increasing NO levels through paracrine metabolite secretion. Significantly, we found that O-ASC mediated chemoresistance in cancer cells can be deregulated by altering NO homeostasis. A combined approach of targeting secreted arginine through L-arginase, along with targeting microenvironment secreted factors induced increased NO synthesis in cancer cells using L-NAME, may be a viable therapeutic approach for targeting ovarian and endometrial cancers.