一元二次方程有求根公式後原過程被忽視了,其實配方法很有智慧

2020-12-05 善數堂

大家都知道一元二次方程的求根公式是用配完全平方的方法(即配方法)推導而得,那麼說明「配方法」很有價值。當有了結果後大家都隨手用之,往往都忘了當初的過程,其實用「配方法」解決相關的代數問題還是有一定的智慧和技巧的,看看以下三個例題:

《例1》為根式方程,常規的辦法用換元,但覺得有點呆板,體現不出智慧價值。我們巧妙地運用配完全平方辦法技巧性就顯示出來了,一次配方後進行再次配方,最後的「代入」也很靈活。

《例2》為有關等式的代數問題,給出的已知等式中其實有完全平方的影子,有完全平方中的中間項(當然先要配上「2倍」),頭尾兩項碰巧抵消了。

《例3》為分式方程,用「去分母」的辦法後產生高次方程會增加難度。用「配方法」,這次要添中間項,配成後又可再配,這次要配尾項。解完後覺得成就感滿滿。

一元二次方程用「配方法」得出求根公式,有了公式後大家就忽視了原來的過程,這種只要結果忽視過程的理念是不可取的。結果固然重要但過程中蘊藏著智慧和思維。

相關焦點

  • 一元二次方程的求根公式是怎樣推導的?| Vita君的數學隨筆
    上一篇中提到了一元二次方程的求根公式,那麼這個求根公式是怎樣推導的呢?其實很簡單哦。大家好,我是 Vita 檸檬茶,今天我們來討論一下一元二次方程求根公式的推導。,這個一元二次方程怎麼用配方法來解展開後就是: 鋪墊2:配方法 配方法就是:在左右兩邊添一個常數項,使得左邊能夠湊成完全平方公式的形式注意: 執行第 2 步之前
  • 美國人發明了「新」一元二次方程求根公式?
    見諸史籍的最早的一元二次方程的解法是中國人趙爽在對《周髀算經》做註解的時候提出的,他解決的是一次項係數為2B時的情形,比印度人婆羅摩笈多(公元7世紀初)要早很多年。而在公元9世紀左右花拉子米提出的一元二次方程的解法就是現在通用的配方法的雛形——由於那個年代人們不承認負數,更別說複數,所以花拉子米在解方程的時候只保留了正根。
  • 一元二次方程求根公式的推導
    一元二次方程的求根公式,很多同學記不住,其實只要你認真仔細的推導幾遍
  • 【數學發現】一元二次方程求根公式
    不過由於當時沒有發明符號代數,在這些資料上,說清楚一個題目之後,就用四則運算把它計算出來,今天的人們很難嚴格地劃分這樣的計算是在解一元一次方程還是在做算術題。對於受過九年制義務教育的人來說,一元二次方程是非常熟悉的內容。我們能解任何一個一元二次方程(包括判定一個一元二次方程沒有實數根),原因是我們掌握了一元二次方程的求根公式。
  • 【作者分享】一元二次方程的求根公式
    作者分享:文章簡介:本文立足於教學中學生思維能力、運算能力等核心能力的培養,詳細展示了一元二次方程求根公式的探究過程,特別關注了本課重難點的突破策略。本課的重難點是一元二次方程求根公式的推導。為了讓學生經歷公式探究的過程,理解公式的本質,我設計了「提出問題—探究公式—抽象公式」三個環節。首先讓學生在已有知識經驗的基礎上,找到知識的生長點,體會學習公式法的必要性。接著以問題串的形式,讓學生通過獨立探究、互動釋疑,引發學生深層次思考,理解一元二次方程配方過程中分類討論的必要性,滲透轉化的思想方法和由特殊到一般的研究思路。
  • 一元二次方程的「極簡」解法比求根公式更簡單?
    幾天前,曉方發了一個連結給我,好像是比較權威的機構,聲稱有人可能發現了一元二次方程更簡單的「極簡」解法,比求根公式更簡單。 我當時第一個反應就是不可能吧,一元二次方程是初等數學一個重要的基礎內容,比較簡單,也存在了很久,如果真的有更簡單的方法,那不應該早就被發現了?
  • 九數上:公式法解一元二次方程,你學會了嗎?
    同學們大家好,我是老朋友小隴老師,上節內容,我們推送了人教版九年級數學用配方法解一元二次方程的知識內容,本節將繼續推送九年級數學用公式法解一元二次方程的知識詳解,還沒有掌握的同學務必要看看,相信會對你有很大的幫助。
  • 中考第一課堂,一元二次方程中的求根公式(中考必考題)
    一元二次方程 ,在中高考中是必考的題型,而且佔據大部分的分數。可以說是中考、高考的重點。甚至會在後面演變成更高次的方程的求解問題,但是不管幾次的方程,最終都要通過換元等方式,演變成一元二次方程來求解,所以無論是中考,或者是高考,一元二次方程的求解,是必須掌握的方程求解方式。
  • 初中數學解一元二次方程,四種解法各有不同,學會靈活運用
    一元二次方程是中考的重點內容,也是初中數學學習的重點,解一元二次方程是重要的應用,不管是直接開平方,還是配方法、公式法、因式分解法等等方法解方程,四種解法各有不同,不同的依據,不同的適用範圍,都需要同學們重點掌握的,然後根據題目的實際情況,選擇最佳的解題方法。
  • 一元二次方程極簡新解法!告別「醜陋」的求根公式~
    ——孩子老是記不住一元二次方程的求根公式怎麼辦?——多半是太懶了,打一頓就好了。二次方程可謂是人類在數學探索的偉大成就之一,它最早是在公元前2000年到1600年,被古巴比倫人提出用於解決賦稅問題。在4000多年後的今天,二次方程被用來解決更多樣更複雜的數學應用問題,數以百萬計的人(尤其是學生)都努力把二次方程公式銘刻在他們的腦海中。而近日,美國奧數總教頭、卡耐基梅隆數學大學教授羅博深(Po-Shen Loh)公開表示,剛剛發現了一種最新的「極簡」二次方程求根公式推導。
  • 2018中考數學知識點:一元二次方程求解方法
    一元二次方程求解方法     1、直接開平方法     利用平方根的定義直接開平方求一元二次方程的解的方法叫做直接開平方法。直接開平方法適用於解形如(x+a)2=b的一元二次方程。根據平方根的定義可知,x+a是b的平方根,     2、配方法     配方法的步驟:先把常數項移到方程的右邊,再把二次項的係數化為1,再同時加上1次項的係數的一半的平方,最後配成完全平方公式     3、公式法     公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法
  • 一元二次方程求解過程推導
    一元二次方程的解法主要有配方法、公式法和因式分解法等。首先介紹配方法。將一元二次方程化為如下形式若解得以上是用配方法求解一元二次方程的過程,目的就是為了等式左邊配成一個完全平方式,如果等式右邊為非負,則方程在實數範圍內有解。
  • 初中數學一元二次方程求解例題分析,強化練習求根方法
    之前我們講解了一元二次方程的概念和幾種求解方法,比如直接開平方,配方法,因式分解法,公式法,這節課我們具體根據例題,來講解這幾種方法的應用。一、直接開平方法對於直接開平方法解一元二次方程時注意一般都有兩個解,不要漏解,如果是兩個相等的解,也要寫成x1=x2=a的形式,其他的都是比較簡單。
  • 一元二次方程解法的匯總以及拓展
    配方法配方法就是針對一般形式的一元二次方程ax^2+bx+c=0(a≠0)來說,將二次項的係數化成1,再通過配方法的形式將一元二次方程ax^2+bx+c=0(a≠0)化成(x-m)^2=n的形式,再利用直接開平方法求出x。這裡注意:當n≧0時該方程有實數根,當n<0時該方程沒有實數根。
  • 2021初中七年級代數知識點:一元二次方程的解法
    中考網整理了關於2021初中七年級代數知識點:一元二次方程的解法,希望對同學們有所幫助,僅供參考。   一元二次方程的解法 (10分)   1、直接開平方法   利用平方根的定義直接開平方求一元二次方程的解的方法叫做直接開平方法。直接開平方法適用於解形如 的一元二次方程。
  • CMU華裔奧數總教頭發現的一元二次方程新解法,網友先質疑後笑了
    而在公元9世紀左右花拉子米提出的一元二次方程的解法就是現在通用的配方法的雛形——由於那個年代人們不承認負數,更別說複數,所以花拉子米在解方程的時候只保留了正根。現在的教材通用的一元二次方程的解法就是配方法:在4000多年後的今天,二次方程被用來解決更多樣更複雜的數學應用問題,數以百萬計的人(尤其是學生)都努力把二次方程公式銘刻在他們的腦海中。
  • 2019年初高中數學銜接暨高一選拔講座3,一元二次方程獨門秘笈
    在歷年的高考中,很多同學就是因為計算沒有過關,在很多題的解答中出現運算問題導致白白丟掉了本不應該丟掉的分數,比如解析幾何中的韋達定理化簡要使用到通分、因式分解等優化計算;數列中解方程組的基本運算功;導數解答題中求導後的優化計算;三角函數的求值化簡;二次函數的最大值、最小值問題;立體幾何中涉及中位線定理
  • 《一元二次方程的根與係數的關係》說課稿
    一、說教材首先談談我對教材的理解,《一元二次方程的根與係數的關係》是人教版初中數學九年級上傳冊第二十一章21.2的內容,本節課的內容是一元二次方程的根與係數的關係,該內容是在學習了一元二次方程的解法和根的判別式之後引入的。它深化了兩根與係數之間的關係,是今後繼續研究一元二次方程根的情況的主要工具,是方程理論的重要組成部分。
  • 一元二次方程的解法(2) 公式法
    一、從配方法開始
  • 九年級數學一元二次函數基礎知識點講解,輕鬆入門一元二次函數
    九年級數學一元二次函數基礎知識點講解,輕鬆入門一元二次函數本文我們主要通過圖像和函數的性質進行一元二次函數基礎考點的講解,希望同學們在應用一元二次函數相關的知識時,能夠記住這些基礎相關的考點,順利突破難點!