Science:我國科學家揭示人類早期胚胎發育中的組蛋白修飾重編程

2020-12-04 生物谷

2019年7月22日訊/

生物谷

BIOON/---在真核生物中,組蛋白與帶負電荷的雙螺旋DNA組裝成核小體。因胺基酸成分和分子量不同,組蛋白主要分成5類:H1,H2A,H2B,H3和H4。除H1外,其他4種組蛋白均分別以二聚體形式相結合,形成核小體核心。DNA便纏繞在核小體的核心上。而H1則與核小體間的DNA結合。

組蛋白修飾(histone modification)是指組蛋白在相關酶作用下發生甲基化、乙醯化、磷酸化、腺苷酸化、泛素化、ADP核糖基化等修飾的過程。

組蛋白上發生甲基化的位點是賴氨酸和精氨酸。賴氨酸能夠分別發生一、二、三甲基化,精氨酸只能發生一、二甲基化。在組蛋白H3上,共有5個賴氨酸位點可以發生甲基化修飾。一般來說,組蛋白H3K4的甲基化主要聚集在活躍轉錄的啟動子區域。組蛋白H3K9的甲基化與基因的轉錄抑制及

異染色質

有關。H3K27甲基化可導致相關基因的沉默,並且與X染色體失活相關。H3K36的甲基化與基因轉錄激活相關。

組蛋白修飾調節基因表達和發育。在一項新的研究中,為了解決在人類早期發育中組蛋白修飾如何發生重編程,中國清華大學生命科學學院的頡偉(Wei Xie)課題組、鄭州大學第一附屬醫院的孫瑩璞(Ying-Pu Sun)課題組和徐家偉(Jiawei Xu)課題組研究了人卵母細胞和早期胚胎中的關鍵組蛋白標記。相關研究結果於2019年7月4日在線發表在Science期刊上,論文標題為「Resetting histone modifications during human parental-to-zygotic transition」。

圖片來自Science, 2019, doi:10.1126/science.aaw5118。

在小鼠卵母細胞中,H3K4me3與H3K27me3都表現出與體細胞不同的非經典分布規律。與小鼠中不同的是,允許性標記H3K4me3在人卵母細胞的啟動子中主要表現出經典的分布模式。在受精後,合子基因組激活(zygotic genome activation, ZGA)前的胚胎在富含CpG的調節區域中獲得可訪問性的染色質和廣泛的H3K4me3。相比之下,抑制性標記H3K27me3經歷全局性消除。隨後,一旦合子基因組激活,富含CpG的調節區域轉變為活性或抑制狀態,隨後在發育基因上恢復H3K27me3。

最後,通過結合染色質和轉錄組圖譜,這些研究人員揭示出早期譜系特化期間的轉錄程序和不對稱的H3K27me3分布模式。

總的來說,這些數據揭示出一種預備性階段(priming phase)與人類親本-合子轉變表觀

遺傳

轉變(parental-to-zygotic epigenetic transition)關聯在一起。(生物谷 Bioon.com)

參考資料:Weikun Xia et al. Resetting histone modifications during human parental-to-zygotic transition. Science, 2019, doi:10.1126/science.aaw5118.

相關焦點

  • 人類早期胚胎發育組蛋白修飾重編程規律
    在小鼠卵細胞發育晚期,組蛋白修飾組蛋白H3第4位賴氨酸三甲基化(H3K4me3)和組蛋白H3第27位賴氨酸三甲基化(H3K27me3)會以非經典的形式分布,並通過母源繼承的方式傳遞到胚胎中調控子代的基因表達和發育。由於人類卵細胞和早期胚胎樣本稀缺性以及極低量細胞組蛋白修飾技術的缺乏,人類早期胚胎發育中組蛋白修飾的重編程規律及功能並不清楚。
  • 我國科學家揭示人類早期胚胎組蛋白修飾重編程
    伴隨著發育的進行,表觀遺傳學修飾經歷了劇烈的重編程。近年來,以小鼠等模式生物為研究模型,DNA甲基化、染色質開放性、染色質高級結構以及組蛋白修飾等表觀遺傳學特徵的動態變化過程和規律都逐漸被揭示。  2019年7月4日,鄭州大學孫瑩璞課題組與清華大學頡偉課題組在Science上發表研究長文Resetting histone modifications during human parental-to-zygotic transition,揭示了人類早期發育過程中組蛋白修飾的重編程過程。
  • ...組在《科學》期刊合作發文揭示人類早期胚胎組蛋白修飾重編程過程
    清華生命學院頡偉課題組在《科學》期刊合作發文揭示人類早期胚胎組蛋白修飾重編程過程清華新聞網7月8日電 清華大學生命科學學院頡偉課題組與鄭州大學第一附屬醫院孫瑩璞/徐家偉課題組合作,揭示了人類早期發育過程中組蛋白修飾的重編程過程。
  • 中國科學家發現人類早期胚胎發育組蛋白重編程規律
    據鄭州大學第一附屬醫院網站消息,近日,鄭州大學第一附屬醫院孫瑩璞/徐家偉課題組、清華大學生命科學院頡偉課題組合作研究揭示了人類早期胚胎發育組蛋白修飾重編程規律,發現人類早期胚胎發育染色質獨特的親本到合子表觀基因組的轉換模式,提出「Epigenome rebooting(表觀基因組重啟)」模型。
  • 人類親本-合子轉變期間組蛋白修飾重編程
    人類親本-合子轉變期間組蛋白修飾重編程 作者:小柯機器人 發布時間:2019/7/31 10:35:32 2019年7月26日出版的《科學》雜誌發表了中國科學家的一項最新研究成果。
  • 鄭大一附院專家組揭示人類早期胚胎發育「表觀基因組重啟」機制
    近日,鄭州大學第一附屬醫院孫瑩璞/徐家偉課題組、清華大學生命科學院頡偉課題組合作研究揭示了人類早期胚胎發育組蛋白修飾重編程規律,發現人類早期胚胎發育染色質獨特的親本到合子表觀基因組的轉換模式,提出「Epigenome rebooting(表觀基因組重啟)」模型。
  • 頡偉組發表綜述總結哺乳動物早期發育中的表觀遺傳重編程
    在這個過程中,一個重要的生物學問題是表觀遺傳記憶是如何進行遺傳和重編程以完成親本到合子的發育轉變。近年來,微量細胞表觀遺傳和表觀基因組分析技術的快速發展使得在分子層面揭示這一過程的動態調控和功能成為可能。
  • 同濟大學高紹榮/江賜忠合作揭示胚胎發育過程的重編程模式
    在哺乳動物中,染色質三維結構對基因的調控起著非常重要的作用。隨著高通量染色體構象捕獲技術(Hi-C)和高通量測序技術的快速發展,近年來,科學家們已經揭示了多種重要生物學事件發生過程中的染色體三維結構信息。2017年頡偉和劉江團隊背靠背報導了從小鼠受精後到著床前發育各個階段的胚胎染色質高級結構經歷了劇烈的重編程結構重組【1,2】。
  • ...合作揭示小鼠體細胞核移植胚胎發育過程中染色質高級結構重編程...
    147bp的DNA纏繞在組蛋白八聚體後形成核小體念珠結構是染色質的一級結構,之後經過不斷地摺疊堆積,最終形成了複雜的染色質三維結構。在哺乳動物中,染色質三維結構對基因的調控起著非常重要的作用。隨著高通量染色體構象捕獲技術(Hi-C)和高通量測序技術的快速發展,近年來,科學家們已經揭示了多種重要生物學事件發生過程中的染色體三維結構信息。
  • 解鎖人類早期胚胎發育之謎
    該研究首次揭示了人類早期胚胎中的染色體三維結構的動態變化,並發現CTCF蛋白對於早期胚胎發育中拓撲相關結構域(TAD結構)有著重要的調控功能,為進一步揭示人類胚胎發育機制提供了理論基礎。人類等哺乳動物的生命起始於精卵結合所形成的受精卵,而後會經歷一段複雜的早期胚胎發育過程,即從一個細胞逐漸分裂分化形成一個含有上百種細胞類型、多種器官的複雜有機體。同時,胚胎也從全能性向多能性過渡。「這期間,個體的表觀遺傳信息會發生多層次的重編程。」
  • 我國科學家首次揭示人類早期胚胎中染色體三維結構的動態變化
    首次揭示了人類早期胚胎中染色體三維結構的動態變化,並發現CTCF蛋白對於早期胚胎發育中拓撲相關結構域(TAD結構)有著重要調控功能,為進一步揭示人類胚胎發育機制提供了理論基礎。人類的DNA如果拉成一條直線約有2米長,然而細胞核的直徑卻僅有5微米至10微米,近期研究發現DNA可以通過有序的摺疊組成不同的拓撲結構域,最終形成染色質的高級結構。
  • 【中國科學報】解鎖人類早期胚胎發育之謎
    該研究首次揭示了人類早期胚胎中的染色體三維結構的動態變化,並發現CTCF蛋白對於早期胚胎發育中拓撲相關結構域(TAD結構)有著重要的調控功能,為進一步揭示人類胚胎發育機制提供了理論基礎。  解鎖表觀遺傳之關鍵要素  人類等哺乳動物的生命起始於精卵結合所形成的受精卵,而後會經歷一段複雜的早期胚胎發育過程,即從一個細胞逐漸分裂分化形成一個含有上百種細胞類型、多種器官的複雜有機體。同時,胚胎也從全能性向多能性過渡。  「這期間,個體的表觀遺傳信息會發生多層次的重編程。」
  • 【學術前沿】頡偉組發表綜述總結哺乳動物早期發育中的表觀遺傳重...
    早期發育過程中表觀遺傳學重編程模式2020年10月8日,清華大學生命科學學院頡偉實驗室(第一作者為清華大學生命科學學院博士後夏煒焜)受邀在Stem Cell Reports發表綜述「Rebooting the epigenomes during mammalian early embryogenesis」(哺乳動物早期胚胎發育過程中的表觀基因組重啟),詳細總結了哺乳動物早期發育過程中表觀遺傳學重編程的研究進展
  • 科學家揭示豬早期胚胎發育的三維基因組學重編程規律
    生豬的育種中廣泛應用了輔助生殖技術,包括體外受精技術、孤雌和孤雄生殖技術等。但與體外受精胚胎相比,孤雌和孤雄胚胎的存活率級低。這一存活率差異產生的機制目前還不清楚。深入理解這一機制不僅有助於增加商業化豬育種的產仔數,也將有利於生物醫學研究中轉基因豬模型的建立。哺乳動物早期胚胎發育過程中經歷複雜的表觀遺傳信息的重編程。表觀遺傳信息的重編程其與胚胎的存活緊密關聯。
  • 頡偉孟安明等在《分子細胞》發表斑馬魚配子及早期胚胎組蛋白修飾...
    這一重要發現不僅有助於我們理解斑馬魚早期胚胎表觀基因組多步驟建立的機制,也闡明了脊椎動物表觀基因組重編程過程的保守性和物種差異性。前期小鼠和人類研究結果表明,很多親本表觀遺傳信息在受精之後都被擦除,只有部分表觀遺傳信息會保留下來並發揮重要作用。然而,表觀基因組重編程模式在不同物種之間是否保守,是否存在物種特異的顯著差異是領域內一個非常重要的生物學的問題。斑馬魚作為常用的發育生物學模式生物,為研究上述兩個問題提供了一個非常理想的平臺。
  • 人類早期胚胎發育表觀遺傳調控規律解密
    這一重要發現進一步理解人類胚胎發育過程中染色質重編程調控機制,也為研究體外受精、試管嬰兒等相關應用和胚胎發育相關疾病提供了理論基礎。  人類的個體生命起源於受精卵,受精卵在胚胎發育早期經歷了一系列顯著的染色體重編程事件。近些年,以小鼠為模式生物的研究表明:胚胎染色體的重編程過程中,來源父本、母本染色體的開放狀態、高級結構,以及其攜帶的表觀遺傳信息都發生了劇烈的改變。
  • 我國科學家發表兩篇Science論文,揭示靈長類動物胚胎發育之謎
    缺乏處於原腸胚形成階段的靈長類動物胚胎樣品限制了科學家們對靈長類動物中這一關鍵事件的理解。近期,人類胚胎在體外培養了12到13天。許多政府和國際組織建議不要讓人類胚胎在體外培養超過14天。因此,有理由期待對非人靈長類動物胚胎模型系統的分析將闡明原腸胚形成機制,並有望闡明人類發育以及早期發育過程中出現的過程異常如何導致發育缺陷和疾病。
  • 科學家揭示DNA再甲基化導致體細胞克隆胚胎發育異常
  • 河南省科學家研究人類早期胚胎發育規律獲重大突破
    2018年5月2日,鄭州大學第一附屬醫院、河南省生殖與遺傳重點實驗室主任孫瑩璞研究團隊、清華大學頡偉團隊和那潔團隊合作研究,揭示了人類早期胚胎發育各階段染色質重編程變化規律。
  • 組蛋白研究進展速覽!
    這些DNA甲基轉移酶對於哺乳動物組織發育和體內平衡是必不可少的。它們還與人類發育障礙和癌症有關,這就支持DNA甲基化在細胞命運的指定和維持中起著關鍵作用。之前的研究已表明組蛋白的翻譯後修飾參與了確定啟動子和活躍轉錄基因體的DNA甲基轉移酶定位和DNA甲基化的模式。然而,控制基因間DNA甲基化的建立和維持的機制仍然知之甚少。