人類親本-合子轉變期間組蛋白修飾重編程

2020-12-05 科學網

人類親本-合子轉變期間組蛋白修飾重編程

作者:

小柯機器人

發布時間:2019/7/31 10:35:32

2019年7月26日出版的《科學》雜誌發表了中國科學家的一項最新研究成果。來自清華大學和鄭州大學第一附屬醫院的科學家合作探明了人類從親本到合子的轉變過程中組蛋白修飾重編程。

為了研究組蛋白修飾在人類早期發育過程中是如何被重新編程的,課題組研究了人類卵母細胞和早期胚胎中的關鍵組蛋白標記。與小鼠卵母細胞不同的是,人類卵母細胞中允許標記三甲基化組蛋白H3賴氨酸4 (H3K4me3),這在啟動子上表現出規範化模式。受精後,prezygotic genome activation(pre-ZGA)胚胎在CpG豐富調控區域獲得允許的染色質和廣泛分布的H3K4me3。相比之下,抑制性標記H3K27me3經歷全基因組丟失。富含CpG的調控區域在ZGA上分解為活性或抑制狀態,隨後在發育基因上恢復H3K27me3。最後,通過結合染色質和轉錄組圖譜,研究人員揭示了早期譜系規範期間的轉錄線路和不對稱H3K27me3模式。總的來說,研究數據揭示了一個啟動階段,連接著人類親本到合子的表觀基因組轉換。

研究人員表示,組蛋白修飾起著調節基因的表達與發育的重要作用。

附:英文原文

Title: Resetting histone modifications during human parental-to-zygotic transition

Author: Weikun Xia, Jiawei Xu, Guang Yu, Guidong Yao, Kai Xu, Xueshan Ma, Nan Zhang, Bofeng Liu, Tong Li, Zili Lin, Xia Chen, Lijia Li, Qiujun Wang, Dayuan Shi, Senlin Shi, Yile Zhang, Wenyan Song, Haixia Jin, Linli Hu, Zhiqin Bu, Yang Wang, Jie Na, Wei Xie, Ying-Pu Sun

Issue&Volume: Vol 365 Issue 6451

Abstract: Histone modifications regulate gene expression and development. To address how they are reprogrammed in human early development, we investigated key histone marks in human oocytes and early embryos. Unlike that in mouse oocytes, the permissive mark trimethylated histone H3 lysine 4 (H3K4me3) largely exhibits canonical patterns at promoters in human oocytes. After fertilization, prezygotic genome activation (pre-ZGA) embryos acquire permissive chromatin and widespread H3K4me3 in CpG-rich regulatory regions. By contrast, the repressive mark H3K27me3 undergoes global depletion. CpG-rich regulatory regions then resolve to either active or repressed states upon ZGA, followed by subsequent restoration of H3K27me3 at developmental genes. Finally, by combining chromatin and transcriptome maps, we revealed transcription circuitry and asymmetric H3K27me3 patterning during early lineage specification. Collectively, our data unveil a priming phase connecting human parental-to-zygotic epigenetic transition.

DOI: 10.1126/science.aaw5118

Source:https://science.sciencemag.org/content/365/6451/353

Science:《科學》,創刊於1880年。隸屬於美國科學促進會,最新IF:41.037

相關焦點

  • 人類早期胚胎發育組蛋白修飾重編程規律
    在小鼠卵細胞發育晚期,組蛋白修飾組蛋白H3第4位賴氨酸三甲基化(H3K4me3)和組蛋白H3第27位賴氨酸三甲基化(H3K27me3)會以非經典的形式分布,並通過母源繼承的方式傳遞到胚胎中調控子代的基因表達和發育。由於人類卵細胞和早期胚胎樣本稀缺性以及極低量細胞組蛋白修飾技術的缺乏,人類早期胚胎發育中組蛋白修飾的重編程規律及功能並不清楚。
  • ...組在《科學》期刊合作發文揭示人類早期胚胎組蛋白修飾重編程過程
    清華生命學院頡偉課題組在《科學》期刊合作發文揭示人類早期胚胎組蛋白修飾重編程過程清華新聞網7月8日電 清華大學生命科學學院頡偉課題組與鄭州大學第一附屬醫院孫瑩璞/徐家偉課題組合作,揭示了人類早期發育過程中組蛋白修飾的重編程過程。
  • 中國科學家發現人類早期胚胎發育組蛋白重編程規律
    據鄭州大學第一附屬醫院網站消息,近日,鄭州大學第一附屬醫院孫瑩璞/徐家偉課題組、清華大學生命科學院頡偉課題組合作研究揭示了人類早期胚胎發育組蛋白修飾重編程規律,發現人類早期胚胎發育染色質獨特的親本到合子表觀基因組的轉換模式,提出「Epigenome rebooting(表觀基因組重啟)」模型。
  • Science:我國科學家揭示人類早期胚胎發育中的組蛋白修飾重編程
    組蛋白修飾(histone modification)是指組蛋白在相關酶作用下發生甲基化、乙醯化、磷酸化、腺苷酸化、泛素化、ADP核糖基化等修飾的過程。組蛋白上發生甲基化的位點是賴氨酸和精氨酸。賴氨酸能夠分別發生一、二、三甲基化,精氨酸只能發生一、二甲基化。在組蛋白H3上,共有5個賴氨酸位點可以發生甲基化修飾。
  • 我國科學家揭示人類早期胚胎組蛋白修飾重編程
    伴隨著發育的進行,表觀遺傳學修飾經歷了劇烈的重編程。近年來,以小鼠等模式生物為研究模型,DNA甲基化、染色質開放性、染色質高級結構以及組蛋白修飾等表觀遺傳學特徵的動態變化過程和規律都逐漸被揭示。  2019年7月4日,鄭州大學孫瑩璞課題組與清華大學頡偉課題組在Science上發表研究長文Resetting histone modifications during human parental-to-zygotic transition,揭示了人類早期發育過程中組蛋白修飾的重編程過程。
  • 頡偉組發表綜述總結哺乳動物早期發育中的表觀遺傳重編程
    在這個過程中,一個重要的生物學問題是表觀遺傳記憶是如何進行遺傳和重編程以完成親本到合子的發育轉變。近年來,微量細胞表觀遺傳和表觀基因組分析技術的快速發展使得在分子層面揭示這一過程的動態調控和功能成為可能。
  • 頡偉孟安明等在《分子細胞》發表斑馬魚配子及早期胚胎組蛋白修飾...
    頡偉孟安明等在《分子細胞》發表斑馬魚配子及早期胚胎組蛋白修飾重編程研究成果清華新聞網11月20日電  11月15日,清華大學生命學院頡偉研究組與孟安明研究組緊密合作,在《分子細胞》(Molecular Cell)期刊發表題為《親本合子轉換期廣泛的增強子去記憶化和啟動子預備化
  • 【學術前沿】頡偉組發表綜述總結哺乳動物早期發育中的表觀遺傳重...
    在這個過程中,一個重要的生物學問題是表觀遺傳記憶是如何進行遺傳和重編程以完成親本到合子的發育轉變。近年來,微量細胞表觀遺傳和表觀基因組分析技術的快速發展使得在分子層面揭示這一過程的動態調控和功能成為可能。
  • 鄭大一附院專家組揭示人類早期胚胎發育「表觀基因組重啟」機制
    近日,鄭州大學第一附屬醫院孫瑩璞/徐家偉課題組、清華大學生命科學院頡偉課題組合作研究揭示了人類早期胚胎發育組蛋白修飾重編程規律,發現人類早期胚胎發育染色質獨特的親本到合子表觀基因組的轉換模式,提出「Epigenome rebooting(表觀基因組重啟)」模型。
  • 頡偉組發表合子基因組激活過程中RNA聚合酶參與的調控機理
    受精後,基因組仍然在一段時間內保持沉默,而在受精卵分裂到一定時期後(比如小鼠在2細胞晚期,人在8細胞時期),基因組迅速激活並完成,同時母源積累的RNA逐漸降解,最終完成從母源轉錄組向合子轉錄組的轉變。此外,Pol II結合位點與親本遺傳的表觀基因組部分特徵相關。比如Pol II結合與DNA甲基化呈現負相關性。
  • Nature Plants|首次在單細胞水平揭示植物配子、合子和葉肉細胞的染色質空間結構!
    該研究分析了植物配子、合子和葉肉細胞的染色質空間結構,首次從單個細胞水平揭示了植物染色質的三維基因組特徵,展示了配子在受精前後的染色質空間結構的變化及其與基因表達的關係,對於研究合子基因組激活和胚胎發育的染色質基礎,解析親本基因組互作及其在雜種優勢形成中的機制都具有十分重要的意義。
  • Cell:在細胞分裂時,組蛋白化學修飾也可遺傳,並在維持後代細胞身份...
    這些研究人員說,所有細胞都具有一套相同而又完整的DNA,但是每個細胞經編程後激活或沉默某些基因,從而確定它們是成為心臟細胞,還是成為腸道細胞等其他細胞。在這項新的研究中,這些研究人員設計了一種方法來追蹤核小體中組蛋白發生的化學修飾是否準確地從親本細胞傳遞到細胞分裂後形成的兩個子細胞中的相同DNA區域。
  • 同濟大學高紹榮/江賜忠合作揭示胚胎發育過程的重編程模式
    最近,劉江和陳子江團隊揭示了人類早期胚胎的染色體三維結構的動態變化過程中,CTCF蛋白對拓撲相關結構域(TAD)起著重要的調控作用(詳見BioArt報導:專家點評Nature丨劉江/陳子江合作團隊揭示人類精子和胚胎染色體三維結構建立的奧秘)【3】。
  • 研究繪製人類幹細胞多譜系分化和重編程的多維表觀遺傳圖譜
    利用這些細胞模型,研究人員繪製了多譜系人類細胞的DNA鏈特異性的全基因組R-loop圖譜,並且建立了相應的轉錄組、染色質開放性、DNA甲基化以及包括H3K27ac、H3K4me3、H3K36me3、H3K27me3等組蛋白修飾在內的一系列表觀基因組圖譜。
  • 廣州生物院m6A修飾調控體細胞重編程機理研究獲進展
    該研究揭示了在體細胞重編程過程中,識別RNA m6A甲基化修飾的reader蛋白YTHDF2和YTHDF3通過不同的RNA降解途徑協同調控體細胞中相關基因的降解,促進間質上皮轉換(MET),從而利於重編程的順利進行。
  • 劉光慧等合作繪製人類幹細胞多譜系分化和重編程多維表觀遺傳圖譜
    該研究系統繪製了人類胚胎幹細胞多譜系分化和細胞重編程過程的全基因組R-loop圖譜、轉錄圖譜及多維表觀遺傳修飾圖譜,首次揭示了R-loop在人類細胞命運決定過程中的作用,並提出R-loop可作為一種新型的表觀遺傳記憶發揮功能。
  • ...哺乳動物合子基因組激活過程中RNA聚合酶參與轉錄起始的調控機理
    清華新聞網11月2日電 近日,清華大學生命學院頡偉研究組通過開發高靈敏度檢測蛋白和DNA在全基因組相互作用的新方法——Stacc-seq,揭示了小鼠早期胚胎中RNA聚合酶II通過「三步走」的模式參與實現基因組激活的過程。
  • 付向東團隊揭示受精後父本基因組重編程起始機制
    付向東團隊揭示受精後父本基因組重編程起始機制 作者:小柯機器人 發布時間:2020/3/13 13:30:30   近日,美國加州大學聖地牙哥分校付向東團隊發現,剪接激酶SRPK1催化魚精蛋白磷酸化從而起始受精卵母細胞中父本基因組的重編程
  • ...合作揭示小鼠體細胞核移植胚胎發育過程中染色質高級結構重編程...
    2017年頡偉和劉江團隊背靠背報導了從小鼠受精後到著床前發育各個階段的胚胎染色質高級結構經歷了劇烈的重編程結構重組【1,2】。最近,劉江和陳子江團隊揭示了人類早期胚胎的染色體三維結構的動態變化過程中,CTCF蛋白對拓撲相關結構域(TAD)起著重要的調控作用(詳見BioArt報導:)【3】。
  • Cell子刊:揭示m6A修飾調控體細胞重編程的機理
    近日,發表在《Cell Reports》上的研究中,中國科學院廣州生物醫藥與健康研究院研究員陳捷凱課題組揭示了m6A修飾調控體細胞重編程的機理,對理解m6A在體細胞重編程等細胞命運決定過程中的功能提供了新視角。