植物所揭示植物中O-GlcNAc糖基化介導表觀遺傳修飾調控發育新機制

2020-12-05 中國科學院

  細胞內蛋白質翻譯後O-N-乙醯氨基葡萄糖(O-GlcNAc)修飾,由O-GlcNAC糖基轉移酶催化完成,這種糖基化修飾參與調控細胞內多種重要的生物學過程,並在人類疾病與治療中得到應用。在植物中,這種動態的蛋白糖基化與磷酸化修飾調節植物春化作用介導的開花過程,而O-GlcNAc信號與組蛋白表觀遺傳調控的關係尚不清楚。

  中國科學院植物研究所研究員、中國科學院院士種康團隊致力於植物體內O-GlcNAc信號調控春化響應及開花時間的分子機制研究。近期,該團隊發現,擬南芥O-GlcNAc轉移酶SEC基因功能缺失突變體具有早花的表型,且突變體中開花時間的負調節因子FLC的轉錄受到抑制,同時FLC染色質區組蛋白H3K4me3修飾水平顯著降低,表明植物體內糖基轉移酶SEC參與表觀遺傳介導的開花時間調節過程。FLC位點組蛋白的H3K3me3修飾由組蛋白甲基轉移酶ATX1催化完成,該研究發現SEC可以直接催化ATX1使其獲得O-GlcNAc修飾。在體外及體內條件下,SEC均表現出通過O-GlcNAc修飾而激活ATX1的組蛋白甲基轉移酶活性,而且,遺傳分析表明ATX1的功能依賴於SEC。進一步的蛋白質譜分析及蛋白點突變功能驗證結果表明,位於ATX1SET結構域中的Ser947SECATX1進行O-GlcNAc修飾並且激活其組蛋白甲基轉移酶活性的關鍵位點。

  該研究揭示了植物體內一種新的蛋白O-GlcNAc糖基化介導表觀遺傳修飾調控開花的機制,並且建立了組蛋白甲基轉移酶的O-GlcNAc修飾參與植物發育過程的新功能。研究結果為表觀遺傳調控植物發育開闢了新途徑,同時也為進一步研究O-GlcNAc信號調控植物發育及外界環境響應的分子機制奠定了基礎。

  該研究成果於827日在線發表於國際學術期刊The EMBO Journal。種康研究組副研究員邢立靜和已畢業客座博士生劉焱為論文的共同第一作者,種康為通訊作者。相關工作得到國家基金委和科技部的資助。

  文章連結

 

O-GlcNAc轉移酶SEC通過O-GlcNAc修飾激活組蛋白甲基轉移酶ATX1的活性進而負調控開花時間 

  細胞內蛋白質翻譯後O-連N-乙醯氨基葡萄糖(O-GlcNAc)修飾,由O-GlcNAC糖基轉移酶催化完成,這種糖基化修飾參與調控細胞內多種重要的生物學過程,並在人類疾病與治療中得到應用。在植物中,這種動態的蛋白糖基化與磷酸化修飾調節植物春化作用介導的開花過程,而O-GlcNAc信號與組蛋白表觀遺傳調控的關係尚不清楚。
  中國科學院植物研究所研究員、中國科學院院士種康團隊致力於植物體內O-GlcNAc信號調控春化響應及開花時間的分子機制研究。近期,該團隊發現,擬南芥O-GlcNAc轉移酶SEC基因功能缺失突變體具有早花的表型,且突變體中開花時間的負調節因子FLC的轉錄受到抑制,同時FLC染色質區組蛋白H3K4me3修飾水平顯著降低,表明植物體內糖基轉移酶SEC參與表觀遺傳介導的開花時間調節過程。FLC位點組蛋白的H3K3me3修飾由組蛋白甲基轉移酶ATX1催化完成,該研究發現SEC可以直接催化ATX1使其獲得O-GlcNAc修飾。在體外及體內條件下,SEC均表現出通過O-GlcNAc修飾而激活ATX1的組蛋白甲基轉移酶活性,而且,遺傳分析表明ATX1的功能依賴於SEC。進一步的蛋白質譜分析及蛋白點突變功能驗證結果表明,位於ATX1的SET結構域中的Ser947是SEC對ATX1進行O-GlcNAc修飾並且激活其組蛋白甲基轉移酶活性的關鍵位點。
  該研究揭示了植物體內一種新的蛋白O-GlcNAc糖基化介導表觀遺傳修飾調控開花的機制,並且建立了組蛋白甲基轉移酶的O-GlcNAc修飾參與植物發育過程的新功能。研究結果為表觀遺傳調控植物發育開闢了新途徑,同時也為進一步研究O-GlcNAc信號調控植物發育及外界環境響應的分子機制奠定了基礎。
  該研究成果於8月27日在線發表於國際學術期刊The EMBO Journal。種康研究組副研究員邢立靜和已畢業客座博士生劉焱為論文的共同第一作者,種康為通訊作者。相關工作得到國家基金委和科技部的資助。
  文章連結
 
O-GlcNAc轉移酶SEC通過O-GlcNAc修飾激活組蛋白甲基轉移酶ATX1的活性進而負調控開花時間 

相關焦點

  • 植物所揭示種子休眠與萌發的表觀遺傳調控機制
    種子休眠與萌發是植物由生殖生長過渡到營養生長的重要發育轉變進程,涉及大量基因的激活或者沉默。組蛋白修飾介導的表觀遺傳基因轉錄調控可能在其中發揮關鍵作用,但其分子機制尚不完全清楚。  中國科學院植物研究所劉永秀研究組利用遺傳和生理生化等手段,揭示了擬南芥SNL1和SNL2調控種子休眠和萌發的分子機制。
  • 植物所揭示O-糖基化修飾調控生物鐘周期的分子機制
    生物鐘是植物細胞中感知並預測光照和溫度等環境因子晝夜周期性變化的精細時間機制,它通過協調代謝與能量狀態以適應環境因子的晝夜動態變化,從而為植物的生長發育提供適應性優勢。生物鐘周期紊亂會嚴重影響植物多種生理和發育關鍵過程,如開花時間和脅迫應答等。生物鐘核心因子的翻譯後修飾如磷酸化和泛素化等,可以精確調控生物鐘周期。
  • 植物所揭示糖基化和磷酸化修飾介導小麥開花的新機制
    氧-乙醯氨基葡萄糖(O-GlcNAc)修飾以及磷酸化修飾調控了植物體內許多重要的生理過程。但因為O-GlcNAc修飾和磷酸化修飾靶蛋白的絲氨酸和蘇氨酸之間存在共存和競爭的動態調控關係,以及細胞中活躍的氧連糖基化特性提高了化學鑑定難度,導致人們對二者調控春化作用的機制仍不清楚。
  • 中科院植物所揭示種子休眠與萌發的表觀遺傳調控機制
    種子休眠與萌發是植物由生殖生長過渡到營養生長的重要發育轉變進程,涉及大量基因的激活或者沉默。組蛋白修飾介導的表觀遺傳基因轉錄調控可能在其中發揮關鍵作用,但其分子機制尚不完全清楚。 中國科學院植物研究所劉永秀研究組利用遺傳和生理生化等手段,揭示了擬南芥SNL1和SNL2調控種子休眠和萌發的分子機制。2013年,研究人員發現SNL1能夠結合組蛋白去乙醯化酶HDA19,調控組蛋白H3K9K18的乙醯化水平,影響基因轉錄。
  • 上海科學家揭示染色質修飾調控植物基因表達的新機制
    原標題:上海科學家揭示染色質修飾調控植物基因表達的新機制  植物沒法靠遷徙躲避不利的自然困境,它們又是如何適應環境開花結果的呢?8月6日,中科院分子植物科學卓越創新中心植物分子遺傳國家重點實驗室何躍輝研究組,和杜嘉木研究組合作,分別在國際知名期刊《自然·遺傳學》上背靠背發表研究論文。
  • 中科院遺傳發育所謝旗研究組揭示ABA信號調控新機制
    Plant | 中科院遺傳發育所謝旗研究組揭示ABA信號調控新機制來源 | 遺傳發育所編輯 | 王一,BioArt植物脫落酸(Abscisic acid, ABA)作為主要的植物激素之一,參與植物的生長發育和各種生物和非生物脅迫應對過程。
  • ABA等植物激素調控與蛋白翻譯後修飾研究
    激素合成之後由於生理調控的需要自動運輸到作用部位,微量激素就能引起明顯的生理效應。大多數植物激素在調控植物生長發育過程中作用比較複雜,同一個特定的發育過程需要多種不同激素的協同作用,而同一種激素也可以調控多個發育過程植物激素髮揮特定生理功能的機制是非常複雜的。
  • 中科院植物所揭示介導小麥開花新機制—新聞—科學網
    記者日前從中國科學院植物研究所獲悉,由該所研究員、中科院院士種康率領的研究團隊利用蛋白質修飾組學和分子生物學策略,揭示了糖基化修飾和磷酸化修飾動態調控春化作用
  • 研究揭示O-糖基化修飾調控生物鐘周期的分子機制
    生物鐘是植物細胞中感知並預測光照和溫度等環境因子晝夜周期性變化的精細時間機制,它通過協調代謝與能量狀態以適應環境因子的晝夜動態變化,從而為植物的生長發育提供適應性優勢。生物鐘周期紊亂會嚴重影響植物多種生理和發育關鍵過程,如開花時間和脅迫應答等。生物鐘核心因子的翻譯後修飾如磷酸化和泛素化等,可以精確調控生物鐘周期。
  • 植物所在光周期調控開花的表觀遺傳機制方面取得系列進展
    長日照下,FT被光周期輸出因子CO在韌皮部於黃昏時(dusk)特異激活,CO-FT調控單元是光周期途徑的核心調控模式,CO結合在FT靠近轉錄起始位點的近端啟動子區從而激活其表達。  從植物到人類的多細胞真核生物中,PcG因子在關鍵發育基因的轉錄抑制中發揮重要作用。PcG複合物本身並不與DNA特異性結合,而是通過Polycomb響應元件(PREs)的募集等方式到達靶基因的染色質。
  • 北京基因組所等揭示O-GlcNAc糖基化修飾維持基因組穩定性的分子機制
    但與高保真的DNA複製酶相比,Polη複製未損傷DNA模板的錯誤率顯著升高(10-2~10-3),極易導致遺傳信息不能夠正確地從親代細胞傳遞到子代細胞中,因此它到複製叉的招募和移除必須受到嚴格調控,然而關於Polη在TLS完成後如何從複製叉解離尚不清楚。
  • 研究揭示蛋白質SUMO化修飾精細調控植物次生細胞壁增厚新機制
    1月18日,PLOS Genetics 雜誌在線發表了中國科學院分子植物科學卓越創新中心/植物生理生態研究所李來庚研究組題目為SUMO modification of LBD30 by SIZ1 regulates secondary
  • 植物所金京波研究組揭示SUMO化修飾調控植物遠紅光信號的新機制
    遠紅光調控植物種子萌發、下胚軸伸長、開花時間和花青素積累等生物學過程。植物通過遠紅光受體phytochrome A(phyA)感知遠紅光信號。FAR-RED ELONGATED HYPOCOTYL 1(FHY1)轉運光激活的phyA到細胞核,起始遠紅光信號。
  • 植物維管發育表觀調控機製取得進展
    該研究藉助獨特的擬南芥管狀分子異位誘導系統VISUAL(Vascular Induced System Using Arabidopsis Leaves),通過一系列的甲基化組和轉錄組分析,確定了DNA主動去甲基化在維管發育中的作用,並揭示了木質部管狀分子分化的表觀遺傳調控機制。
  • 遺傳發育所研究組在蛋白質翻譯後修飾調控植物脅迫反應研究中取得...
    甲基化修飾與一氧化氮(nitric oxide; NO)依賴的亞硝基化修飾是高度保守的蛋白質翻譯後修飾,這兩類修飾參與調控眾多生物學過程,包括調控非生物脅迫反應。但二者調控非生物脅迫的分子機制不甚清楚。
  • 遺傳發育所等發現植物26S蛋白酶體組裝參與鹽脅迫應答新機制
    遺傳發育所等發現植物26S蛋白酶體組裝參與鹽脅迫應答新機制 2018-11-07 遺傳與發育生物學研究所 【字體這些特定形式的蛋白酶體介導特定蛋白質在特定細胞環境下降解。然而,目前在植物中還沒有關於依賴於細胞特定類型或環境的特異性蛋白酶體的報導。
  • 綜述:水稻的表觀遺傳調控和表觀基因組圖譜
    表觀遺傳調控是生物體調節基因表達及染色體行為的重要機制之一,對基因表達調控、轉座子沉默、基因組穩定性以及生物體生長發育有著重要的調控作用。在植物中,表觀遺傳調控廣泛存在,在植物響應外界環境、調控生長發育可塑性等方面發揮著重要作用。而近年來隨著高通量測序技術及其相關技術手段的發展,一幅表觀基因組學「畫卷」也漸漸展現在人們面前。
  • 研究揭示m6A RNA表觀遺傳修飾對成年小鼠造血幹細胞靜息狀態的調控...
    研究揭示m6A RNA表觀遺傳修飾對成年小鼠造血幹細胞靜息狀態的調控作用 2018-07-20 上海生命科學研究院 該工作首次揭示了m6A RNA表觀遺傳修飾在成體造血幹細胞(HSC)自我更新中的關鍵作用。
  • 當DNA甲基化遇上RNA甲基化:果實成熟的表觀遺傳調控
    然而,這兩種核酸修飾之間是否存在內在關聯性卻不清楚。近日,中國科學院植物研究所秦國政研究組和田世平研究組合作,揭示了DNA甲基化可通過調節m6A去甲基化酶基因表達的方式影響番茄果實m6A修飾,而m6A去甲基化酶反饋調節DNA甲基化,從而共同調控果實成熟。該研究發表在Genome Biology 上。果實成熟是一個非常複雜的過程,受內外因素的影響。
  • 植物株型發育新機制 揭示如何調控基因表達
    光明網訊(記者 宋雅娟 張蕃) 7月13日,《自然—植物(Nature Plants)》在線發表了中國農業科學院蔬菜花卉研究所、深圳農業基因組研究所、中科院生物物理所、加州大學戴維斯分校等6家單位合作研究的關於作物株型發育基因表達調控的最新研究成果。