蛋白質摺疊調控革蘭氏陽性菌粘附素的化學反應性
作者:
小柯機器人發布時間:2020/12/1 15:25:18
美國哥倫比亞大學Alvaro Alonso-Caballero研究小組發現,革蘭氏陽性菌可以通過蛋白質摺疊調控粘附素與生物表面的結合能力。 這一研究成果於2020年11月30日發表在《自然—化學》上。
在該研究中,課題組通過磁鑷力譜技術研究了一種叫Cpa的粘附素的硫酯鍵在力的作用下的動態變化。當Cpa在小於6 pN的環境中摺疊時,其硫酯鍵可與炎症環境中常見的胺類配體發生可逆反應;反之,機械去摺疊化以及暴露在大於6 pN的力中則會阻礙硫酯鍵重新形成。研究人員認為,這種與蛋白摺疊偶合的化學反應開關(即「智能共價鍵」)可使粘附素在低作用力中與細胞表面的配體可逆結合,而在機械力存在時以共價鍵形式牢牢鎖在細胞表面。
據了解,革蘭氏陽性細菌定居在黏膜組織上,並能經受諸如咳嗽帶來的機械力擾動,這樣的剪切力已經超出了非共價鍵可以承受的範圍。為了克服這些挑戰,化膿性鏈球菌進化出一種叫Cpa的蛋白質,該蛋白是一種具有半胱氨酸-穀氨醯胺硫酯鍵的纖毛末端粘附素。該硫酯鍵與宿主細胞表面受體之間的反應使之能夠以共價鍵的方式錨定在細胞表面;另一方面,病原體繁殖又需要不停地在細胞表面遷移和擴散。在此之前,細菌是怎樣在分子機理上調和這兩個看似矛盾的需求是未知的。
附:英文原文
Title: Protein folding modulates the chemical reactivity of a Gram-positive adhesin
Author: Alvaro Alonso-Caballero, Daniel J. Echelman, Rafael Tapia-Rojo, Shubhasis Haldar, Edward C. Eckels, Julio M. Fernandez
Issue&Volume: 2020-11-30
Abstract: Gram-positive bacteria colonize mucosal tissues, withstanding large mechanical perturbations such as coughing, which generate shear forces that exceed the ability of non-covalent bonds to remain attached. To overcome these challenges, the pathogen Streptococcus pyogenes utilizes the protein Cpa, a pilus tip-end adhesin equipped with a Cys–Gln thioester bond. The reactivity of this bond towards host surface ligands enables covalent anchoring; however, colonization also requires cell migration and spreading over surfaces. The molecular mechanisms underlying these seemingly incompatible requirements remain unknown. Here we demonstrate a magnetic tweezers force spectroscopy assay that resolves the dynamics of the Cpa thioester bond under force. When folded at forces <6pN, the Cpa thioester bond reacts reversibly with amine ligands, which are common in inflammation sites; however, mechanical unfolding and exposure to forces >6pN block thioester reformation. We hypothesize that this folding-coupled reactivity switch (termed a smart covalent bond) could allow the adhesin to undergo binding and unbinding to surface ligands under low force and remain covalently attached under mechanical stress.
DOI: 10.1038/s41557-020-00586-x
Source: https://www.nature.com/articles/s41557-020-00586-x