可攜式儲能它最行 走近石墨烯柔性超級電容器

2020-12-06 電子產品世界

  隨著科學技術的進步,工業化和信息化的迅速發展,計算機、行動電話、照相機等電子產品已成為生活中的必需品。由臺式機向筆記本電腦、座機向行動電話的轉變,都表明人類對電子設備的要求已不僅僅局限在「可使用」,而是逐步向便攜化邁進。這就要求電子設備的儲能系統必須具備長時間的供電能力,才可使電子設備脫離電源線的約束,成為方便使用的可移動裝置。超級電容器是一種新型的儲能器件,具有高容量、高功率密度、高充放電速度等優點。

本文引用地址:http://www.eepw.com.cn/article/201705/359381.htm

  柔性超級電容器超級電容器的一個分類。超級電容器是由電極材料、集流體、隔膜、電解液組成,而柔性超級電容器是由柔性基底、電極材料、固態電解質組成。其中電極材料可同時起到儲存能量和集流體的作用,固態電解質可同時起到電解質和隔膜的作用。與傳統超級電容器相比,柔性超級電容器具有以下優點:選用性能穩定的電極材料,提高了安全性;超薄的電極材料和精簡的組裝過程,大大縮減了體積,使整個器件更小型、輕質;電極材料和電解質材料用量少,降低了生產成本,且安全環保。

  1、柔性超級電容器的工作原理

  柔性超級電容器與超級電容器的工作原理相同,可分為雙電層儲能機制、贗電容儲能機制和複合儲能機制:

  (1) 雙電層儲能機制是利用電極材料與電解質的接觸面存儲電荷,形成兩個電荷層,整個過程不發生化學反應,僅是離子的吸脫附。

  (2) 贗電容儲能機制是利用電極材料中活性物質表面發生的可逆的氧化還原反應存儲電荷的,屬於法拉第反應過程。

  (3) 複合儲能機制指整個反應過程同時出現雙電層儲能機制和贗電容儲能機制。

  例如:雙電層儲能過程中,僅是電荷的吸脫附,電極材料的循環壽命高,但是儲存電荷的表面積有限,電容值較低;而贗電容儲能過程可獲得較高的電容值,但由於氧化還原反應的不可逆性,循環壽命較低。兩種機制協同作用,發揮各自的優點,彌補各自的不足,將超級電容器的電化學性能完全發揮出來。

  2、石墨烯基柔性超級電容器

  (1)基於石墨烯的柔性超級電容器

  石墨烯是由sp2雜化的碳原子密排成蜂窩狀的二維晶體結構。自問世以來,由於其具有高比表面積、優異的電學性能和穩定的化學性能等特點,在超級電容器領域備受關注。

 

  Stoller等以KOH化學改性的石墨烯作為電極材料,驗證了石墨烯應用在超級電容器電極材料領域的可行性。自此,關於石墨烯作為超級電容器的電極材料的研究層出不窮。如圖1所示,石墨烯柔性超級電容器具有不同的組成形式。

  Chen等將氧化石墨烯懸濁液注入玻璃管中,經還原後,得到與玻璃管形狀相似的石墨烯纖維。所製得的超級電容器具有良好的電化學性能及柔韌性。

  Zhao等將吡咯單體加入到氧化石墨烯懸濁液中,經過聚合和還原後,得到具有良好彈性的石墨烯/聚吡咯三維結構。組裝成的柔性超級電容器具有很好的可壓縮性能。

  El-Kady等利用DVD光碟機雷射還原氧化石墨烯作為電極材料,製備所得柔性超級電容器的比電容達4 mF/cm2,並且具有優異的變形性能。

  

 

  由於平板狀的柔性超級電容器縱向尺寸較小,在變形過程中自身產生的抗力較小,因而更易於變形。Zang等將化學氣相沉積法製備的石墨烯網狀薄膜轉移至幾種不同的柔性基底(聚對苯二甲酸乙二醇酯,PET;聚二甲基矽氧烷,PDMS;聚乙烯,PE;磨砂布和濾紙),並與膠體電解質組裝成具有「三明治」結構的柔性超級電容器。

  根據柔性基底性質的不同,對電容器採取不同的變形性能測試,如彎曲、拉伸、摺紙、任意變形等(圖2)。測試結果發現,各種變形後電容器仍可保持穩定的電容性能,並且可以承受上百次變形,具有很好的變形穩定性。在實際情況中動態變形更加常見,而柔性超級電容器在變形過程中仍可保持穩定的電化學性能,即具有優異的動態變形性能。

  

 

  如圖3所示,Li等將變形類型擴展到動態拉伸變形,將碳納米管轉移至PDMS基底上,測試了不同應變頻率(最高頻率為4.46%/s)下的電化學性能的變化。

  Zang等充分利用石墨烯網狀薄膜可與基底緊密結合的特點,獲得以預拉伸後的褶皺PDMS為基底、石墨烯網狀薄膜為電極材料的可動態拉伸(彎曲)超級電容器。動態拉伸(彎曲)頻率可高達60%/s。拉伸過程通過CV曲線進行實時檢測,結果表明,動態拉伸(彎曲)過程中未見明顯的性能破壞,具有很好的動態變形性能。


相關焦點

  • 石墨烯基超級電容器產業化提速
    原標題:石墨烯基超級電容器產業化提速 摘要 近日中科院大連化物所在石墨烯基超級電容器研究取得新進展,實現了在一個基底上製造具有任意形狀的超級電容器及其模塊化集成
  • 磷酸氧釩類石墨烯結構實現高能量密度柔性超級電容器
    近日,中國科學技術大學合肥微尺度物質科學國家實驗室在二維類石墨烯研究領域取得新進展。研究人員利用新型無機二維超薄結構構建了高氧化還原電位且最優能量密度的柔性平面超級電容器。 近年來,由於可攜式電子器件突飛猛進的發展,柔性薄膜型儲能器件能夠實現能量供給的同時兼具柔性、超薄甚至透明特性而廣受關注。儘管超薄二維石墨烯/類石墨烯材料在構建柔性超級電容器表現出強勁優勢,但是目前高電化學活性的電極材料的進展依然不盡人意,無法滿足目前薄膜型超級電容器對高能量密度的迫切需求。
  • 合肥研究院等研製出硫摻雜石墨烯基柔性全固態超級電容器
    合肥研究院等研製出硫摻雜石墨烯基柔性全固態超級電容器 2017-03-16 合肥物質科學研究院   隨後,進一步研製出了柔性全固態超級電容器器件ASSSCs(如圖2所示),展現出優異的電化學儲能性能:面積比電容高達2.98 mF cm-2、優異的長程循環穩定性(99% for 10000 cycles)、優秀的柔性和機械穩定性(可反覆摺疊或彎折1000次以上而性能不變),優於報導的石墨烯、2D SnSe2和SnSe以及3D GeSe
  • 碳纖維在柔性超級電容器中的研究進展
    隨著可攜式和可穿戴智能電子產品的快速發展,其對儲能器件的要求越來越高,傳統的超級電容器難以滿足其需求,柔性超級電容器因其具有輕便、可彎折以及良好的循環穩定性,成為新一代有巨大潛力的儲能器件。本文介紹了超級電容器以碳纖維在柔性超級電容器的研究進展,總結了柔性超級電容器存在的問題並提出了展望。
  • 南京郵電大學黃維院士/趙強教授《AFM》綜述:柔性透明超級電容器的...
    首先,概述了FTSCs的器件結構、儲能機理、光電性質和機械柔性。然後,討論了電極材料的設計原則,總結了具有優異的光電性能(包括光電性質FoMe和電容性質FoMc)、機械柔性和循環穩定性的柔性透明導電電極(FTCEs)的製備策略。接下來,討論了薄膜超級電容器、微型超級電容器、電致變色超級電容器、光超級電容器和電池類電池超級電容器等多功能FTSCs的研究現狀。
  • 石墨烯複合材料在超級電容器中的研究進展
    作為碳材料中最新的一員—石墨烯是擁有sp2雜化軌道的二維碳原子晶體,由英國曼徹斯特大學的Geim等於2004年發現,並能穩定存在,這是目前世界上最薄的材料—單原子厚度的材料。在石墨烯諸多性質中,其中比表面積高和導電性好,最重要的是石墨烯本身的電容為21μF/cm2,達到了所有碳基雙電層電容器的上限,這比其他碳材料都要高,是製造超級電容器的理想材料。
  • 石墨烯納米卷可實現堅固耐用的柔性微型超級電容器
    由石墨烯納米卷組成的薄膜電極具有出色的耐用性。具有石墨烯納米卷的柔性微型超級電容器具有出色的耐用性。1成果簡介 小型,靈活和自供電的電子系統的興起極大地刺激了對微型電化學儲能裝置的迫切需求。令人印象深刻的是,平面離子超級電容器(MSC)由於快速的離子傳輸,超長的使用壽命以及易於與微電子設備集成而起著至關重要的作用。遺憾的是,MSC中薄膜電極的堅固性通常不能滿足薄膜電極的結構穩定性和裝置的耐用性。
  • 石墨烯電極用於高性能超級電容器
    近日,合肥物質科學研究院固體物理研究所Wang Zhenyang教授領導的研究小組報導了一種製備具有超高儲能密度的高性能超級電容器的新方法。構建具有超厚和豐富離子傳輸路徑的三維石墨烯框架,對石墨烯超級電容器的實際應用具有重要意義。然而,在較厚的電極中,由於離子向電極材料表面輸送不足,電子傳輸性能較差,整體儲能能力受到限制。
  • 我國科學家研製超高儲能密度超級電容器
    近期,中科院合肥研究院固體所王振洋研究員課題組實現了宏觀厚度石墨烯晶體膜大面積製備,在超高儲能密度超級電容器,進而實現了多孔石墨烯晶體膜的宏觀厚度製備;以此作為電極構築的超級電容器,在儲能密度和循環穩定性方面得到顯著的提升。
  • 石墨烯增強導電聚合物水凝膠,製成可拉伸超級電容器
    石墨烯增強導電聚合物水凝膠,製成可拉伸超級電容器 發表時間:2018/4/10
  • 技術解析:我國石墨烯基超級電容器研究進展
    超級電容器是最具應用前景的電化學儲能技術之一。目前,超級電容器的研究重點是提高能量密度和功率密度,發展具有高比表面積、電導率和結構穩定性的電極材料是關鍵。石墨烯因具有比表面積大、電子導電性高、力學性能好的特點而成為理想的電容材料,但石墨烯的理論容量不高,在石墨烯基電極製備過程中容易發生堆疊現象,導致材料比表面積和離子電導率下降。
  • 寧波材料所:石墨烯納米卷可實現堅固耐用的柔性微型超級電容器
    本文要點:通過凍幹獲得具有不同長寬比的石墨烯納米卷。由石墨烯納米卷組成的薄膜電極具有出色的耐用性。具有石墨烯納米卷的柔性微型超級電容器具有出色的耐用性。成果簡介 小型,靈活和自供電的電子系統的興起極大地刺激了對微型電化學儲能裝置的迫切需求。
  • 超級電容器勢起 汽車領域初顯崢嶸
    作為一種新型儲能裝置,超級電容器具有輸出功率高、充電時間短、使用壽命長、工作溫度範圍寬、安全且無汙染等優點,有望成為本世紀新型的綠色電源。傳統的超級電容器體積較大,不能適應微型設備對於儲能器件體積較小的要求。因此,高性能微型超級電容器的設計與製備,以及在微型系統中作為能量存儲單元的應用是當前研究的熱點之一。
  • 美韓大學教授聯合改進柔性超級電容器 性能直逼電池
    近日,使用簡單的逐層塗布技術,美國和韓國的研究人員開發了一種紙質柔性超級電容器,該超級電容器具備高能量和高功率密度的極佳性能。我們通常根據三種性質來判斷儲能裝置的優劣:能量密度、功率密度和循環穩定性。與電池相比,超級電容通常具有高功率密度,但是能量密度低,即超級電容存儲電量的能力要弱於電池,但是瞬間充放電能力要優於電池。所以想要將電容作為儲能設備,其低能量密度是最大的限制。為了提高超級電容器的性能,韓國大學化學與生物工程系的Lee和合作者Jinhan Cho就提高超級電容器的能源密度進行研究,同時他們將保持其高功率產出。
  • 美研發出石墨烯柔性超級電容器
    美國萊斯大學利用石墨烯等開發出了柔性雙電層電容器(也叫超級電容器)。相關論文已發表在《ACS NANO》上。這種雙電層電容器的特點是耐彎曲性出色。  萊斯大學的研究人員James Tour利用雷射照射聚醯亞胺薄膜,在其表面形成了20μm左右的與石墨烯片相連接的泡狀材料,將這種材料用作雙電層電容器的電極。
  • 合肥研究院在超高儲能密度超級電容器研製方面取得進展
    近日,中國科學院合肥物質科學研究院固體物理研究所研究員王振洋團隊實現了宏觀厚度石墨烯晶體膜大面積製備,在超高儲能密度超級電容器研製方面取得進展。研究人員採用雷射誘導加工法,將聚醯亞胺前驅體直接原位轉化為石墨烯晶體膜;針對其直接用作儲能電極時所面臨的體積效應技術瓶頸,通過優化前驅體的分子構型和熱敏感性,大幅增加了雷射與聚合物薄膜的作用深度,進而實現了多孔石墨烯晶體膜的宏觀厚度製備;以此作為電極構築的超級電容器,在儲能密度和循環穩定性方面得到顯著提升。
  • 我國開發出高能量密度的柔性鈉離子微型超級電容器
    據中國科學院網站消息,近日,中國科學院大連化學物理研究所二維材料與能源器件研究組(DNL21T3)研究員吳忠帥團隊與中科院院士包信和團隊合作開發出具有高能量密度、高柔性、高耐熱性能的柔性平面鈉離子微型超級電容器。
  • 基於3D雷射誘導的石墨烯泡沫超級電容器陣列的供能策略
    近日,閩江學院張誠博士、王軍教授與美國賓州州立大學程寰宇教授、南京大學唐少龍教授等合作,報導了利用柔性可延展的納米發電機及微型超級電容器陣列為褶皺石墨烯力學傳感器的供能策略。研究人員利用贗電容特性的ZnP多孔超薄納米片與雷射直寫石墨烯(LIG)複合材料製備了島橋構型的叉指結構微型超級電容器陣列。兩種不同儲能機理電極材料的高效複合,實現了電容器在不犧牲功率密度和循環壽命的條件下大幅提升其能量密度;藉助微型超級電容器陣列的串聯/並聯,有效的調控了儲能系統的輸出電壓/電流特性。
  • 又是石墨烯!科學家在電化學電容器領域獲突破
    中國青年報客戶端北京4月4日電(中青報·中青網記者 邱晨輝)記者今天從中國科學院金屬研究所獲悉,該所科研人員近日與英國倫敦大學學院及香港大學合作,在石墨烯基電化學電容器儲能研究上取得突破性進展,相關成果論文已在國際學術期刊《自然-能源》在線發表。
  • 新型石墨烯-釩柔性混合電池/超級電容器能量密度直接翻倍
    加拿大皇后大學石墨烯集成功能技術(GIFT)研究小組的研究人員開發了一種新型石墨烯柔性混合電池-超級電容器裝置。混合電池/超級電容器的結構圖像該裝置由高比表面積電極與電解質組合而成,電解質中含有可以兩種以上氧化狀態存在的氧化還原物質