合肥研究院等研製出硫摻雜石墨烯基柔性全固態超級電容器

2020-11-30 中國科學院

合肥研究院等研製出硫摻雜石墨烯基柔性全固態超級電容器

2017-03-16 合肥物質科學研究院

【字體:

語音播報

  近日,中國科學院合肥物質科學研究院等離子體物理研究所博士王奇和南京師範大學教授韓敏課題組合作,在高性能雜原子摻雜石墨烯基納米結構的規模化製備及其在柔性全固態超級電容器應用方面取得新進展。部分研究成果已在線發表於國際期刊Small上,並被選為該雜誌的Inside Front Cover。

  為滿足人們對柔性可穿戴電子產品日益增長的需求,迫切需要發展柔性全固態功率源或能量儲存裝置。要想實現這一目的,關鍵在於設計開發出兼具優異儲能和機械性質的電極材料。雜原子摻雜石墨烯以及2D層狀金屬硫化物(LMCs)納米結構的出現,為高性能電極材料的設計帶來了新的契機,但其儲能性能(能量密度、循環穩定性等)尚需進一步提高。能否將上述兩類材料有效「聯姻」或耦合,從而發展出高性能的電極材料,至今仍是材料科學和化學領域極具挑戰性的課題。

  針對上述問題,王奇和韓敏課題組開展了合作研究,利用可控熱轉換油胺包裹的SnS2-SnS混相納米盤前驅物的策略,巧妙地將有機分子的碳化、摻雜、相轉換和自組裝等重要的物理化學過程集成於一體,首次成功實現了硫摻雜石墨烯(S-G)和SnS雜化納米片的原位合成與組裝,得到了新穎的3D多孔SnS/S-G 雜化納米建築(HNAs,如圖1所示)。相比傳統合成策略,該方法具有簡單高效、重現性好、可規模化製備等優點,為延伸和拓展摻雜石墨烯材料在清潔能源、光電和傳感等重要技術領域的應用奠定了基礎。在三電極體系中以KOH溶液作為電解液,所得3D石墨烯複合材料質量比電容高達642 F g-1 (電流密度為1 A g-1),遠高於近來報導的石墨烯複合物和其他電活性材料(如體相和納米級的SnS及其複合物、G-Mn3O4納米棒、G-CoS2、2D CoS1.07/N- C納米雜化體等)。

  隨後,進一步研製出了柔性全固態超級電容器器件ASSSCs(如圖2所示),展現出優異的電化學儲能性能:面積比電容高達2.98 mF cm-2、優異的長程循環穩定性(99% for 10000 cycles)、優秀的柔性和機械穩定性(可反覆摺疊或彎折1000次以上而性能不變),優於報導的石墨烯、2D SnSe2和SnSe以及3D GeSe2納米結構基柔性ASSSCs。

  這項工作提出了原位集成和組裝2D納米結構單元來構建3D多孔雜化納米建築或骨架材料的新策略,且具備規模化製備的前景,為今後理性設計高性能的雜化電極材料,發展柔性功率源或能量儲存裝置鋪墊了道路。此外,通過優化設計和組合,還有望延伸出其它類型的多功能3D多孔骨架材料,後續工作正在進行之中。

  上述工作得到了國家自然科學基金、中科院合肥研究院院長基金特別支持項目的資助。

    文章連結

 

圖1. 3D摻雜石墨烯基雜化納米材料製備示意圖及其結構表徵

 

圖2. 3D摻雜石墨烯基柔性全固態超級電容器的構建及性能測試

  近日,中國科學院合肥物質科學研究院等離子體物理研究所博士王奇和南京師範大學教授韓敏課題組合作,在高性能雜原子摻雜石墨烯基納米結構的規模化製備及其在柔性全固態超級電容器應用方面取得新進展。部分研究成果已在線發表於國際期刊Small上,並被選為該雜誌的Inside Front Cover。
  為滿足人們對柔性可穿戴電子產品日益增長的需求,迫切需要發展柔性全固態功率源或能量儲存裝置。要想實現這一目的,關鍵在於設計開發出兼具優異儲能和機械性質的電極材料。雜原子摻雜石墨烯以及2D層狀金屬硫化物(LMCs)納米結構的出現,為高性能電極材料的設計帶來了新的契機,但其儲能性能(能量密度、循環穩定性等)尚需進一步提高。能否將上述兩類材料有效「聯姻」或耦合,從而發展出高性能的電極材料,至今仍是材料科學和化學領域極具挑戰性的課題。
  針對上述問題,王奇和韓敏課題組開展了合作研究,利用可控熱轉換油胺包裹的SnS2-SnS混相納米盤前驅物的策略,巧妙地將有機分子的碳化、摻雜、相轉換和自組裝等重要的物理化學過程集成於一體,首次成功實現了硫摻雜石墨烯(S-G)和SnS雜化納米片的原位合成與組裝,得到了新穎的3D多孔SnS/S-G 雜化納米建築(HNAs,如圖1所示)。相比傳統合成策略,該方法具有簡單高效、重現性好、可規模化製備等優點,為延伸和拓展摻雜石墨烯材料在清潔能源、光電和傳感等重要技術領域的應用奠定了基礎。在三電極體系中以KOH溶液作為電解液,所得3D石墨烯複合材料質量比電容高達642 F g-1 (電流密度為1 A g-1),遠高於近來報導的石墨烯複合物和其他電活性材料(如體相和納米級的SnS及其複合物、G-Mn3O4納米棒、G-CoS2、2D CoS1.07/N- C納米雜化體等)。
  隨後,進一步研製出了柔性全固態超級電容器器件ASSSCs(如圖2所示),展現出優異的電化學儲能性能:面積比電容高達2.98 mF cm-2、優異的長程循環穩定性(99% for 10000 cycles)、優秀的柔性和機械穩定性(可反覆摺疊或彎折1000次以上而性能不變),優於報導的石墨烯、2D SnSe2和SnSe以及3D GeSe2納米結構基柔性ASSSCs。
  這項工作提出了原位集成和組裝2D納米結構單元來構建3D多孔雜化納米建築或骨架材料的新策略,且具備規模化製備的前景,為今後理性設計高性能的雜化電極材料,發展柔性功率源或能量儲存裝置鋪墊了道路。此外,通過優化設計和組合,還有望延伸出其它類型的多功能3D多孔骨架材料,後續工作正在進行之中。
  上述工作得到了國家自然科學基金、中科院合肥研究院院長基金特別支持項目的資助。
    文章連結
 
圖1. 3D摻雜石墨烯基雜化納米材料製備示意圖及其結構表徵
 
圖2. 3D摻雜石墨烯基柔性全固態超級電容器的構建及性能測試

列印 責任編輯:葉瑞優

相關焦點

  • 合肥研究院在超高儲能密度超級電容器研製方面取得進展
    近日,中國科學院合肥物質科學研究院固體物理研究所研究員王振洋團隊實現了宏觀厚度石墨烯晶體膜大面積製備,在超高儲能密度超級電容器研製方面取得進展。石墨烯具有比表面積大、導電性好、穩定性高等一系列優點,近年來被廣泛研究,用作超級電容儲能器件的電極材料。石墨烯電極在微觀尺寸下所具有的優異電化學性能已經被廣泛研究和證實。但石墨烯超級電容器的規模化應用需要在保持其優異電化學性能前提下,實現宏觀尺度(大面積和超高厚度)上的電極製備與組裝。
  • 石墨烯基超級電容器產業化提速
    原標題:石墨烯基超級電容器產業化提速 摘要 近日中科院大連化物所在石墨烯基超級電容器研究取得新進展,實現了在一個基底上製造具有任意形狀的超級電容器及其模塊化集成
  • 可攜式儲能它最行 走近石墨烯柔性超級電容器
    超級電容器是由電極材料、集流體、隔膜、電解液組成,而柔性超級電容器是由柔性基底、電極材料、固態電解質組成。其中電極材料可同時起到儲存能量和集流體的作用,固態電解質可同時起到電解質和隔膜的作用。  1、柔性超級電容器的工作原理  柔性超級電容器與超級電容器的工作原理相同,可分為雙電層儲能機制、贗電容儲能機制和複合儲能機制:  (1) 雙電層儲能機制是利用電極材料與電解質的接觸面存儲電荷,形成兩個電荷層,整個過程不發生化學反應,僅是離子的吸脫附。
  • 石墨烯電極用於高性能超級電容器
    近日,合肥物質科學研究院固體物理研究所Wang Zhenyang教授領導的研究小組報導了一種製備具有超高儲能密度的高性能超級電容器的新方法。構建具有超厚和豐富離子傳輸路徑的三維石墨烯框架,對石墨烯超級電容器的實際應用具有重要意義。然而,在較厚的電極中,由於離子向電極材料表面輸送不足,電子傳輸性能較差,整體儲能能力受到限制。
  • 製備出具有高電位窗口的柔性固態超級電容器
    日前,中國科學院電工研究所超導與能源新材料研究部馬衍偉課題組採用多級次石墨烯複合電極與離子液體凝膠聚合物電解質,首次開發出具有3.5V電壓窗口的高能量密度柔性固態超級電容器
  • 我國科學家研製超高儲能密度超級電容器
    近期,中科院合肥研究院固體所王振洋研究員課題組實現了宏觀厚度石墨烯晶體膜大面積製備,在超高儲能密度超級電容器研製方面取得新進展。石墨烯具有比表面積大、導電性好、穩定性高等一系列優點,近年來被廣泛研究用作超級電容儲能器件的電極材料。石墨烯電極在微觀尺寸下所具有的優異電化學性能已經被廣泛的研究和證實。但石墨烯超級電容器的規模化應用需要在保持其優異電化學性能的前提下,實現宏觀尺度(大面積和超高厚度)上的電極製備與組裝。
  • 磷酸氧釩類石墨烯結構實現高能量密度柔性超級電容器
    近日,中國科學技術大學合肥微尺度物質科學國家實驗室在二維類石墨烯研究領域取得新進展。研究人員利用新型無機二維超薄結構構建了高氧化還原電位且最優能量密度的柔性平面超級電容器。 近年來,由於可攜式電子器件突飛猛進的發展,柔性薄膜型儲能器件能夠實現能量供給的同時兼具柔性、超薄甚至透明特性而廣受關注。儘管超薄二維石墨烯/類石墨烯材料在構建柔性超級電容器表現出強勁優勢,但是目前高電化學活性的電極材料的進展依然不盡人意,無法滿足目前薄膜型超級電容器對高能量密度的迫切需求。
  • 蘭州大學:簡易製造柔性石墨烯基微型超級電容器具有超高面域性能
    本文要點: 簡便的水熱,物理壓制和雷射雕刻方法來製造具有超高面能量密度和強大柔韌性的高負載石墨烯基MSC成果簡介 具有高性能和靈活性的微型超級電容器石墨烯和還原石墨烯氧化物(rGO)的優勢,例如高比表面積,良好的導電性,機械性能和電化學穩定性,使其成為MSCs柔性電極的有希望的候選者。但是,基於石墨烯的MSC的低質量負載和雙電層電容器(EDLC)機制導致低的區域電化學性能,這是小型化電源的關鍵參數。本文,蘭州大學Yirong Zhao等研究人員在《ACS Appl.
  • 蘭偉課題組:具有超高容量電容的柔性超級電容器
    超級電容器以超快的充電放電能力和長循環壽命而被認為是下一代的理想電子電源產品。為滿足實際需要,迫切需要具有超高容量電容的柔性超級電容器。儘管已證明改良碳基電極是有效的,例如,摻雜氮石墨烯或石墨烯-金屬氧化物顯示出高的體積電容,但這些材料的複雜合成程序極大地限制了它們在能量存儲中的未來應用。
  • 裝備水凝膠電解質全溫度柔性超級電容器
    在某些情況下,柔性儲能設備需要在惡劣環境下工作,特別是在嚴寒和炎熱地區,因此迫切需要開發能夠在寬溫度範圍工作的全溫度柔性超級電容器。但由於傳統水凝膠電解質在零度以下容易結冰,導致電解質離子電導率不足,而在高溫下結構不穩定,難以保留內部水分子,因此尚未實現具有良好性能的全溫度柔性超級電容器。
  • 我國科學家製備出高比能柔性固態鋰離子電容器製備技術
    此外,這些特殊工藝還無法與當前商業化電池/超級電容器的生產過程相兼容,較難實現規模化製備。>近日,中國科學院電工研究所研究員馬衍偉研究團隊在高性能柔性儲能器件製備技術研究中取得進展,通過從材料到器件的協同創新設計,開發出高比能柔性固態鋰離子電容器的規模化製備技術
  • 美研發出石墨烯柔性超級電容器
    美國萊斯大學利用石墨烯等開發出了柔性雙電層電容器(也叫超級電容器)。相關論文已發表在《ACS NANO》上。這種雙電層電容器的特點是耐彎曲性出色。  萊斯大學的研究人員James Tour利用雷射照射聚醯亞胺薄膜,在其表面形成了20μm左右的與石墨烯片相連接的泡狀材料,將這種材料用作雙電層電容器的電極。
  • 二維有序介孔材料應用於微型超級電容器研究獲進展
    二維材料,如石墨烯,是一類具有重要應用前景的平面微型超級電容器電極材料。發展二維材料基複合介孔納米片,不僅可有效抑制片層的堆疊,增加比表面積,而且可大大緩衝電極的體積膨脹,提高電解液離子的擴散和電化學性能。但是,目前報導的都是關於面內垂直柱狀的介孔納米片,而面內平行柱狀的有序介孔納米片的可控制備仍面臨著很大挑戰。
  • 技術解析:我國石墨烯基超級電容器研究進展
    超級電容器是最具應用前景的電化學儲能技術之一。目前,超級電容器的研究重點是提高能量密度和功率密度,發展具有高比表面積、電導率和結構穩定性的電極材料是關鍵。石墨烯因具有比表面積大、電子導電性高、力學性能好的特點而成為理想的電容材料,但石墨烯的理論容量不高,在石墨烯基電極製備過程中容易發生堆疊現象,導致材料比表面積和離子電導率下降。
  • 石墨烯複合材料在超級電容器中的研究進展
    在石墨烯諸多性質中,其中比表面積高和導電性好,最重要的是石墨烯本身的電容為21μF/cm2,達到了所有碳基雙電層電容器的上限,這比其他碳材料都要高,是製造超級電容器的理想材料。超級電容器(Supercapacitors),也叫電化學電容器(Electrochemical capacitors)是一種能量密度和功率密度介於傳統電容器和電池之間的新型儲能器件,超級電容器兼具蓄電池和傳統電容器的優點,如能量密度高、功率密度高、可快速充放電、循環壽命長、具有瞬時大電流放電及對環境無汙染等特性,是近十年來發展起來的新型儲能、節能設備。
  • ACS Omega:基於花生殼的碳製備柔性超級電容器
    通過氮摻雜和向電極添加氧化石墨烯可以進一步改善電極的性能。電極的比電容為289.4 F / g,即使在高掃描速率下也可以保持在可接受的水平。此外,經過5000次測試循環後,良好的電容保持率為92.8%,這表明電極具有出色的電化學性能。圖文導讀 圖1.
  • 基於全木質素水凝膠電解質和納米纖維電極的可再生柔性超級電容器
    目前,研究者對木質素及其衍生物進行了研究,製備了可用於柔性儲能裝置的凝膠電解質。但是,它們的性能還不能同時滿足電化學性能和力學性能。近日,研究者將化學交聯木質素水凝膠電解質與電紡木質素/聚丙烯腈納米纖維電極相結合,製備了全木質素基柔性超級電容器。首先,通過鹼催化開環聚合和交聯反應合成了交聯木質素水凝膠電解質。
  • 中科院寧波材料所:全石墨烯電極用於高性能非對稱超級電容器
    本文要點:通過對氧化石墨烯進行簡單的化學熱修飾而設計「全石墨烯」電極系統於高性能非對稱超級電容器成果簡介 「電極失衡」是阻礙非對稱超級電容器(ASC)潛在性能的主要問題之一,這主要是由於電極微結構的巨大差異引起的。
  • 超級電容器用石墨烯基電極材料的製備及性能研究
    摘要:同傳統二次電池相比,超級電容器具有功率密度高、充放電速度快、循環壽命長等優點,是一種新型高效的儲能裝置,提升其能量密度是目前主要的研究方向。石墨烯作為一種新型二維碳材料,具有電導率高、比表面積大、化學穩定性強等優異特點,是超級電容器的理想電極材料。
  • 「石墨烯電池」續航1000公裡真相!確實如此嗎
    石墨烯儲能設備研製成功後,如果能夠量產,將會給電池行業乃至電動車行業帶來新的變化。石墨烯因其獨特的特性被稱為「神奇材料」,科學家甚至預言它將「徹底改變21世紀」。曼徹斯特大學副校長科林·貝利(Colin Bailey)教授表示:「石墨烯有潛力徹底改變大量應用,從智慧型手機和超高速寬帶到藥物輸送和計算機晶片。」