3D列印專利用於實體器官

2020-12-04 中關村在線

「希望我的這項發明專利可以為複雜手術的前期準備帶去強有力的技術支持,也可以進一步保障像張大伯這樣的手術患者的安全。」昨天,說起自己3D列印專利用於實體器官,市醫療中心李惠利醫院東部院區腹部微創外科醫生鄭四鳴這樣說。

前幾天,來自北侖的68歲張大伯莫名出現皮膚黃染、腹痛不適、精神不振等症狀。當地醫院檢查發現,張大伯肝內有腫塊,且已破裂出血,家屬趕緊將他送往李惠利醫院東部院區治療。

經過一系列的檢查,醫生發現張大伯肝內的腫瘤已有8釐米大小,伴有嚴重的肝硬化。當家屬正在擔心腫瘤是否能夠切除乾淨,手術後是否能恢復過來時,鄭四鳴給張大伯一家帶去了好消息。

原來,鄭四鳴用自己發明的用於實體器官的3D列印專利將二維CT圖像重建為三維的立體模型,從而清晰地辨認腫瘤與周圍管道的關係,進行手術的前期規劃。「經過三維重建數據的仔細分析,張大伯的肝臟體積為1129毫升,腫瘤體積為240毫米。手術規劃提供了兩種方案,一種是右半肝切除,殘肝體積為360毫升,肝功能衰竭的風險很大。另一種是右肝後葉切除,殘肝體積為714毫升。」

利用實體器官的3D列印專利,鄭四鳴為張大伯提供了最佳的手術方案。根據三維重建結果的指導,張大伯的手術在腹腔鏡下順利完成,肝功能衰竭的風險大大降低。目前,張大伯已經出院。

「像張大伯這樣利用3D列印技術完成複雜手術前的治療方案已經超過500人。」鄭四鳴說,這項發明在寧波衛生健康科技成果轉化對接會上已與一家企業籤訂協議,日後將會按需生產。

(7358100)

相關焦點

  • 細菌「活墨水」可用於3D生物列印 或用於器官移植
    細菌「活墨水」可用於3D生物列印  加入不同菌種形成不同三維結構  科技日報北京12月7日電 (記者張夢然)美國《科學》雜誌在線版、物理學家組織網近日報告了一項3D生物列印領域的最新突破:歐洲科學家團隊研發出一種包含細菌的
  • 3D列印顱骨、腦膜、血管……列印「器官」還有多遠?
    隨著技術的進步,甚至連軟性的腦膜、血管、整個的腫瘤,都能用生物材料3D列印出來,有的用於模擬疾病、培訓新醫生,有的用於術前規劃、術中導航,有的直接是可降解材料,可以被身體「吸收」,直接成為身體的一部分……那麼,什麼時候等候器官移植的患者,也可以受益於3D列印,不需要苦等供體呢?
  • 3D列印器官目前發展到什麼程度,可以用於移植麼?
    據IDTechEx預測,到2025年,全球3D列印市場需求為70億美元,預計其中一半來自3D生物列印領域。隨著3D列印技術的迅猛發展,人類已能夠3D列印納米級的結構。那麼,到底3D列印器官可以用於器官移植麼?目前在醫療中主要用於哪些方面呢?
  • 3D列印能解決移植器官短缺問題嗎?|3d列印|移植器官|血管|3d生物...
    加藤霍爾姆在18歲那年創立了自己的第一家生物科技公司,當時他認識到,如果這臺機器有潛力列印器官,就像他父親說的那樣,那它就有潛力徹底改變醫療行業。用於救命用移植的器官在全球各地都非常短缺。例如,在英國,現在要進行腎臟移植的話,通過國家醫療服務體系(NHS),你平均要等待944天之久。肝臟、肺和其它的器官同樣供不應求。移植組織的缺乏,據估計是美國的頭號死亡原因。
  • 未來器官也可以用3D列印——3D生物列印技術
    還用於人體永久植入物。對人身體各部位的複製是高度定製化的產品,通過3D列印這些部件可以與身體完全契合,與身體融為一體。以骨骼為例,當人體的某塊骨骼需要置換,可掃描對稱的骨骼,再列印出相應的骨骼,最後通過手術植入體內。
  • 盤點3D印表機型的各種應用分類
    打開APP 盤點3D印表機型的各種應用分類 撒羅滿3d列印 發表於 2020-03-20 16:28:05 (文章來源:撒羅滿3d列印) 3D列印技術可以運用生活中的許多領域,這一期,撒羅滿將帶您走進3D列印技術類型的具體分享,同時為您展示印表機類型的列印方式,帶您更全面的了解3D列印領域。
  • 國外3D列印腎臟的最新進展!
    最近,Nova菌就遇到了許多男生吐槽自己的腎問題,想和小菌交流看看是否能夠來一次換腎,-_-||其實,利用生物3D列印技術進行腎臟器官的列印已經不是夢了。相較於國內,國外器官列印啟動時間早,經驗愈豐富,今天Nova菌就和大家分享一下,截止目前國外腎臟器官列印的最新進展。為什麼選擇3D列印器官?
  • 常見3d列印技術簡介和優缺點分析(FDM篇)
    3d列印作為一個新興技術,近些年開始走向普通大眾。作為一個3d列印從業者,是時候給大家做個簡單的科普了。3d列印主要有以下幾種常見的列印技術:FDM、SLA、SLS、SLM等。一層成型完成後,機器工作檯下降一個高度(即分層厚度)再成型下 一層,直至形成整個實體造型。優點:便宜、操作簡單。缺點:精度低、需要添加支撐,支撐去除難度和廠家支撐優化、列印材料有關,零件表面有較明顯的列印紋理。應用:FDM適合用於製作尺寸要求不高、複雜程度不高、表面要求不高的零件,是用於中小學教育的首選機型。
  • 研究人員利用3D列印製造微型樂高式「骨磚」
    2020年7月27日,白令三維從外國媒體獲悉,受這種樂高玩具的啟發,科學家開發了一種類似樂高木製玩具的生物支持,能夠更好地修復骨折和修復受損的器官組織。俄勒岡健康與科學大學(ohsu)的研究人員擁有3d的微型樂高式「骨磚」,可以治癒骨折。 研究人員的微型空心磚只有跳蚤的大小,可以用作支架,硬和軟組織都可以再次生長。
  • 3d列印價格為何這麼高
    因此3d列印的高價格是導致其面世以來廣受阻礙的原因。但是3d列印的高價格也是不得已為之的,以下我將分述幾個方面的原因以說明為什麼3d列印的價格如此高。3d列印的材料有些在自然界中是很少存在的,有些即使存在,也很少運用到普通民眾的生活中,更不可能大規模的運用到3d列印中。
  • 科學家正研究3D列印微型人體器官,用於測試新冠病毒藥物
    科學家正研究3D列印微型人體器官,用於測試新冠病毒藥物 站長之家(ChinaZ.com) 7月28日 消息:不管是研究治療新冠肺炎還是其它疾病的方法
  • FDM 3D列印工藝的原理、特點及應用
    相對於去除多餘材料生產零部件的傳統加工工藝,3d列印的典型特點是採用逐層累計材料的方式來加工產品。目前,3d列印的材料包括液體、粉末、線 材、片材等,運用熱、化學反應等方式來固化得到實體產品。自上世紀80年代以來,各種成型工藝百花齊放,典型的3d列印工藝有FDM、SLA、SLS、 SLM、Polyjet等。
  • 懸浮生物3D列印:履行生物列印漂浮的承諾
    我們是否能夠改造出適合體內移植的功能組織和器官?3D列印是否可以幫助實現這一目標?在過去的幾十年中,這些問題已經成為組織工程學(TE)領域研究的最前沿,這得益於有關傳統3D列印技術可以適應控制3D空間中高密度細胞群沉積的演示的推動。在不同的技術中,基於擠出的3D列印已被認為是實現TE視覺的最可能技術。
  • 3D列印器官 萬億規模市場啟動
    有消息稱,美國康奈爾大學研究人員20日在《公共科學圖書館綜合卷》上發表報告稱,他們利用牛耳細胞在3D印表機中列印出人造耳朵,可以用於先天畸形兒童的器官移植。分析人士指出,3D列印將帶來工業的變革,改變傳統的製造方式,而人體器官列印更是能實現人類對健康的追求,甚至對人類社會有著深遠的影響。
  • 3D列印人體器官 可以自主「存活」了
    所以人工製造的人體器官已被視為解決這個問題的重要途徑之一。  列印出「自行跳動的心臟」  目前來看,實驗室裡已可以人工培育出具備所需功能的細胞、脈管系統。這些人工培育的人體器官被許多人視為能解決上述這種移植器官短缺問題的重要途徑,3D列印的進步大大地提高了這種活體組織構造人工培育水平。
  • 3D列印器官,到底可以移植了嗎?這個問題終於有了答案
    這些突破使科學家不斷堅定研究方向,從3D列印出組織甚至到3D列印出器官,越來越多的相關研究話題成為行業內的熱點新聞。那麼,現在既然已經可以列印人體組織,是否意味著用於臨床僅一步之遙?我們先來看看3D生物列印現在發展到了什麼階段。如果把列印的材料都稱為墨水的話,那麼生物3D印表機和常規的3D印表機的原理完全一樣,都是根據預先設置好的列印程序把「墨水」逐層列印出來,最終列印出需要的物體。
  • 2020年中國3D列印材料行業市場現狀及發展前景分析 未來金屬3D列印...
    未來金屬3D列印材料將迎來新爆發期經過30多年的發展,3D列印技術不斷完善,目前已形成了3D生物列印、有機材料列印、金屬列印等多種列印模式,我國3D列印材料仍以工程塑料為主。2019年7月,主營業務為金屬列印的鉑力特在科創板上市,前瞻預計未來金屬3D列印材料將迎來新的爆發期。
  • 3D列印,解密未來製造業的「潛力股」
    2019年聖誕節,諾丁漢大學工程學院的研究生製作了200多個3d雪花送給本科大三的學弟學妹們。每一片雪花都是由我們目前正在攻讀增材製造與3d列印碩士學位(additive manufacturing and 3d printing msc)增材製造和3d列印碩士專業的學生親手製作的。
  • 我們距離3D列印活器官還有多遠?
    2020年3月14日訊 /生物谷BIOON /——研究人員可以列印出構成人體組織的細胞和生物材料,但要使功能齊全的器官能夠正常工作,還有很長的路要走。多年來,科學家們預測一直被用來做玩具、房屋、科學工具甚至一個塑料小兔子的3D列印在未來某一天可能被用於列印活的人體器官來減輕捐獻器官的短缺。
  • 3D列印再突破 器官移植指日可待?
    3D列印再突破 器官移植指日可待?然而,組裝出的土豆內的細胞雖然有很好的活性,但這樣的土豆種到地裡卻很難直接發芽(列印出的器官與體內器官從功能上來說還有較大的差距),這種「形似而神不似」的問題正是當下生物3D列印面臨的瓶頸之一。 據記者了解,要想列印出既在外形結構上相似,結構內的細胞又具有協同功能的組織器官並非易事。這不僅需要開發合適的活性「生物墨水」,還需要一臺能夠精準操控的3D列印設備。