伺服電機「電子齒輪比」的計算方法

2021-01-20 PLC技術圈


伺服電機「電子齒輪比」的計算方法


電子齒輪比主要功能:


1、可以任意地設置每單位指令脈衝對應的電機的速度和位移量(脈衝當量);2、當上位控制器的脈衝發生能力(最高輸出頻率)不足以獲得所需速度時,可以通過電子齒輪功能(指令脈衝倍頻)來對指令脈衝進行×N倍頻。


當伺服電機用在電腦繡花機的框架上時,控制上的要求為主控發送1個脈衝框架得移動0.1mm。對電子齒輪比的計算有影響的主要為以下幾個因素:電機編碼器的解析度;機械裝置的二級傳動比;框架皮帶齒輪大小。


電機編碼器的解析度:伺服電機的編碼器一般為2000線或者是2500線,也就是轉一圈能產生2000或者2500個脈衝,而伺服驅動器對此脈衝進行4倍頻處理,所以電機轉一圈就能產生8000或者10000個脈衝,也就是解析度為8000或者10000。





以三洋伺服電機為例:當控制器給驅動器發送一個脈衝時,伺服電機轉過的角度為


機械裝置的二級傳動比:機械裝置二級傳動比為電機軸和傳動軸的比值如下圖



經過二級傳動裝置後,框架運動的角度折算到電機上角度和二級傳動比是成反比的,比如二級傳動比為1/4,那麼電機轉過的角度就是傳動軸轉過的4倍。


框架齒輪大小:


目前市場上主要有兩種齒輪:繡框移動0.1mm時所需轉過的角度為0.36°和0.45°。大部分機器都是採用0.36°的齒輪。


綜上所述可以得知電子齒輪比的公式如下



-

您好,歡迎來到啟程自動化培訓中心,全新課程火爆預約中!

詳細課程情況請點擊:http://www.qichengplc.com

課程諮詢電話:13631677148 QQ:327914306

啟程自動化培訓 中國專業的自動化培訓服務提供商

掃一掃 關注老鬼微信。優質學習內容一起聊!!


相關焦點

  • 伺服電機電子齒輪比計算方法
    伺服電機電子齒輪比就是對伺服接受到上位機的脈衝頻率進行放大或者縮小,其中一個參數為分子,一個為分母。如分子大於分母就是放大,如分子小於分母就是縮小。例如:上位機輸入頻率100HZ,電子齒輪比分子設為1,分母設為2,那麼伺服實際運行速度按照50HZ的脈衝來進行。
  • 知識 | 伺服電機的電子齒輪比,如何計算方法
    服電機「電子齒輪比」的計算方法電子齒輪比主要功能:1、可以任意地設置每單位指令脈衝對應的電機的速度和位移量(脈衝當量);2、當上位控制器的脈衝發生能力(最高輸出頻率)不足以獲得所需速度時,可以通過電子齒輪功能(指令脈衝倍頻)來對指令脈衝進行×N倍頻。
  • 伺服電機的電子齒輪比計算
    大家好,我是小江,在這裡分享一些我工作中遇到的一些問題,有的是我寫的程序,有的是看書一些心得,分享到這上面,如果有不妥的地方,希望見諒,能看得過去,就看看,看不過去的話,就當啥也沒用,今天主要分享之前的一個項目的伺服控制遇到的問題。
  • 伺服電機的電子齒輪比如何確定?
    1.電子齒輪比參數介紹所謂「 電子齒輪」 功能,主要有兩方面的應用:一是調整電機旋轉1圈所需要的指令脈衝數,以保證電機轉速能夠達到需求轉速。例如上位機PLC最大發送脈衝頻率為200KHz,若不修改電子齒輪比, 則電機旋轉1圈需要10000個脈衝,那麼電機最高轉速為1200rpm,若將電子齒輪比設為2:1,或者將每轉脈衝數設定為5000,則此時電機可以達到2400rpm轉速。例如:電子齒輪比設為1: 1或者每轉脈衝數設為10000,上位機PLC最高發送脈衝頻率為200KHz。
  • 伺服系統如何設置電子齒輪比?伺服電子齒輪比計算
    伺服電機常見的光電編碼器有2500ppr,17位光電編碼器。那麼,對於我們伺服應用總,編碼器精度和伺服驅動器的電子齒輪比有什麼關係呢?伺服電機套裝可以這麼理解:(電機旋轉一圈編碼器脈衝數/電機旋轉一圈機械移動位移mm)*細分數(一個脈衝對應多少毫米)=電子齒輪比分析/電子齒輪比分母其中,單圈脈衝數自己規定,細分數也就是單個脈衝精度,根據系統要求來,電機轉一圈機械移動量基本上是定死的。
  • 電子齒輪比的計算方法
    (點擊上方紅字,免費領資料)PLC控制伺服電機時的電子齒輪比的計算方法,希望對大家有所幫助。
  • 脈衝當量與電子齒輪比的計算(圖文)
    電子齒輪比計算樣例CMX:電子齒輪比的分子是電機編碼器反饋脈衝。CDV:電子齒輪比的分母是上位機的給定脈衝(指令脈衝)。電子齒輪比是伺服中經常要用到的,初學者對這個參數的設置有時會不解,先介紹兩個伺服電子齒輪設置方面的2個小例子,供大家參考下。例子1:已知伺服馬達的編碼器的解析度是131072 P/R,額定轉速為3000r/min,上位機發送脈衝的能力為200Kpulse/s,要想達到額定轉速,那麼電子齒輪比至少應該設為多少?
  • 根據電機額定轉速計算電機額定轉速時電子齒輪比、脈衝當量
    先根據電機額定轉速,計算電機額定轉速時電子齒輪比、脈衝當量: 1)位置環上限頻率=周指令脈衝×電機轉速; 2)周指令脈衝=位置環上限頻率/電機轉速 3)電子齒輪比=編碼器解析度/周指令脈衝=編碼器解析度/(位置環上限頻率/電機轉速)=(編碼器解析度×電機轉速)/位置環上限頻率 4)脈衝當量=螺距/(減速比×周指令脈衝
  • 以電機的最高轉速為目的電子齒輪比設置
    打開APP 以電機的最高轉速為目的電子齒輪比設置 發表於 2019-04-12 13:46:59 伺服驅動器的位置控制模式,必須有電子齒輪比功能,才能順利地與伺服控制器配合,其電子齒輪比的設置有不同的方法和目的,電子齒輪比一般分成分母及分子兩項參數設置。
  • 伺服電機帶動齒輪齒條機構的整體慣量計算
    如圖所示的伺服電機帶動齒輪齒條機構,怎麼求總體轉動慣量。
  • 伺服系統位置控制中的「電子齒輪」分析
    對「電子齒輪」的理解  伺服系統一般具備三大環節:伺服電機、伺服驅動器和實施控制的上位機,上位機大都用PLC或單片機。伺服驅動器的輸出電源是對交流三相或單相電進行整流,得到相應的直流電,通過正弦脈寬調製(SPWM)電壓型逆變器變頻來驅動伺服電機。這樣伺服電機接受來自驅動器輸出的脈衝,在脈衝寬度的時間段內,電機實現位移,一串這樣的脈衝就使得電機旋轉起來,進而驅動機械負載。由於伺服驅動器輸出電源採用了正弦脈寬調製技術,這種技術的特點是輸出的脈衝串不等寬,它可以根據控制信號來產生脈寬。
  • 電子齒輪比計算樣例
    (詳情諮詢工業幫-馬老師,QQ:2903518374 諮詢電話:17771449329)       電子齒輪比是伺服中經常要用到的,初學者對這個參數的設置有時會不解,先介紹兩個伺服電子齒輪設置方面的2個小例子,供大家參考下。
  • 全數字伺服系統中位置環和電子齒輪的設計
    摘要:分析了伺服系統中位置環和電子齒輪的工作原理,同時介紹了一種位置環和電子齒輪的數字實現方法。最後通過實驗驗證了該設計的可行性。
  • 伺服電機的調試方法及伺服電機的選用選型
    在伺服電機上:設置控制方式;設置使能由外部控制;編碼器信號輸出的齒輪比;設置控制信號與電機轉速的比例關係。一般來說,建議使伺服工作中的最大設計轉速對應9V的控制電壓。比如,山洋是設置1V電壓對應的轉速,出廠值為500,如果你只準備讓電機在1000轉以下工作,那麼,將這個參數設置為111。
  • 電子齒輪比與脈衝當量應用換算
    伺服電機每轉一圈需脈衝數 = 20/0.01 = 2000再次驗證公式:伺服側電子齒輪比CMX/CDV = 電機編碼器解析度 / 電機轉一圈所需脈衝數 131072 / 2000 =8192 / 125 = 65.536這是由已知量電機編碼器解析度、螺杆導程,然後選的脈衝當量,設置QD75的AP、AL、AM,然後再算出伺服側電子齒輪比。
  • 伺服電機的制動方式與原理,伺服電機的控制方法
    動態制動器由動態制動電阻組成,在故障,急停,電源斷電時通過能耗制動縮短伺服電機的機械進給  一般都是在伺服電機的U V W相上引出三根線上面分別串上一個制動電阻,這三個電阻接到一個繼電器上 ,在伺服電機正常工作時這個繼電器是吸合的三個相線不短接 當伺服電機要制動時 繼電器就斷電釋放三個相線接到一起了就開始制動了。
  • 詳解步進電機和伺服電機聯繫和區別
    混合式步進電機的應用最為廣泛200步進電機與伺服電機333332首次關注51黑電子論壇及「單片機教程網」官方微信獲得的論壇黑幣獎勵.   步進電機的基本參數: 1.電機固有步距角   它表示控制系統每發一個步進脈衝信號,電機所轉動的角度。
  • 伺服壓力機伺服電機的選型方法
    伺服壓力機伺服電機的選型方法---鑫臺銘提供。 1、伺服電機和步進電機的性能比較: 步進電機作為一種開環控制的系統,和現代數字控制技術有著本質的聯繫。在目前國內的數字控制系統中,步進電機的應用十分廣泛。
  • 伺服電機的常見故障原圖與維修,伺服電機過熱問題的解決方法
    伺服電機的維修方法  伺服電機的維修可以說是相對複雜的,但伺服電機因為長期連續不斷使用或者使用者操作不當,會經常發生電機故障伺服電機的維修需要專業人士來進行,小編現在就以伺服電機發生的幾個常見的故障問題為大家簡單介紹伺服電機維修,雖然不會十分透徹,但是您看後對伺服電機出現的問題一定不會再一頭霧水了。  眾所周知,伺服電機指的是在伺服系統中控制機械元件運轉的發動機,是一種補助馬達間接變速裝置。然而關於各種維修知識,你都知道多少?  1、起動伺服電機前需做的工作有哪些?
  • 淺析伺服電機的慣量問題,伺服電機低慣量與高慣量的區別差異
    其具體表現為:  在伺服系統選型時,除考慮電機的扭矩和額定速度等等因素外,我們還需要先計算得知機械系統換算到電機軸的慣量,再根據機械的實際動作要求及加工件質量要求來具體選擇具有合適慣量大小的電機;在調試時,正確設定慣量比參數是充分發揮機械及伺服系統最佳效能的前提。此點在要求高速高精度的系統上表現尤為突出,這樣,就有了慣量匹配的問題。