極限是考研數學每年必考的內容,在客觀題和主觀題中都有可能會涉及到,平均每年直接考查所佔的分值在10分左右,而事實上,由於這一部分內容的基礎性,每年間接考查或與其他章節結合出題的比重也很大。極限的計算是核心考點,考題所佔比重最大。熟練掌握求解極限的方法是得高分的關鍵。
極限無外乎出這三個題型:求數列極限、求函數極限、已知極限求待定參數。 熟練掌握求解極限的方法是的高分地關鍵, 極限的運算法則必須遵從,兩個極限都存在才可以進行極限的運算,如果有一個不存在就無法進行運算。以下我們就極限的內容簡單總結下。
極限的計算常用方法:四則運算、洛必達法則、等價無窮小代換、兩個重要極限、利用泰勒公式求極限、夾逼定理、利用定積分求極限、單調有界收斂定理、利用連續性求極限等方法。
四則運算、洛必達法則、等價無窮小代換、兩個重要極限是常用方法,在基礎階段的學習中是重點,考生應該已經非常熟悉,進入強化複習階段這些內容還應繼續練習達到熟練的程度;在強化複習階段考生會遇到一些較為複雜的極限計算,此時運用泰勒公式代替洛必達法則來求極限會簡化計算,熟記一些常見的麥克勞林公式往往可以達到事半功倍之效; 夾逼定理、利用定積分定義常常用來計算某些和式的極限,如果最大的分母和最小的分母相除的極限等於1,則使用夾逼定理進行計算,如果最大的分母和最小的分母相除的極限不等於1,則湊成定積分的定義的形式進行計算;單調有界收斂定理可用來證明數列極限存在,並求遞歸數列的極限。
與極限計算相關知識點包括:
1、連續、間斷點以及間斷點的分類:判斷間斷點類型的基礎是求函數在間斷點處的左右極限;
2、可導和可微,分段函數在分段點處的導數或可導性,一律通過導數定義直接計算或檢驗 存在的定義是極限 存在;
3、漸近線,(垂直、水平或斜漸近線);
4、多元函數積分學,二重極限的討論計算難度較大,常考查證明極限不存在。
下面我們重點講一下數列極限的典型方法。