研究利用單細胞表型探索細胞內基因互作
作者:
小柯機器人發布時間:2019/8/23 13:57:17
美國加州大學舊金山分校Jonathan S. Weissman、Luke A. Gilbert及Thomas M. Norman小組,在最新研究中利用豐富的單細胞表型探索細胞內基因互作。該研究於2019年8月23日發表於國際學術期刊《科學》上。
研究人員提出一種用於解釋從轉錄表型到細胞狀態(流形)的高維結構構建的新分析方法。利用這種方法,研究人員從Perturb-seq的資料庫中發掘了基於生長功能以及獲得性功能的基因互作圖譜。對這種多樣性的探索可以幫助有序的對調節途徑,GI的分類原則(例如,鑑定抑制子)和協同作用的機理闡明,如CBL和CNN1可以協調驅動紅細胞分化。最後,研究人員提出可以應用系統機器學習來預測相互作用,促進對更大的GI的探索。
如何從基因的組合表達中產生細胞和生物複雜性是生物學中的核心問題。高通量表型分析方法,如Perturb-seq(單細胞RNA測序聯合CRISPR篩選),為大規模探索此類基因相互作用(GI)提供了機會。
附:英文原文
Title: Exploring genetic interaction manifolds constructed from rich single-cell phenotypes
Author: Thomas M. Norman, Max A. Horlbeck, Joseph M. Replogle, Alex Y. Ge, Albert Xu, Marco Jost, Luke A. Gilbert, Jonathan S. Weissman
Issue&Volume: Volume 365 Issue 6455
Abstract: How cellular and organismal complexity emerges from combinatorial expression of genes is a central question in biology. High-content phenotyping approaches such as Perturb-seq (single-cell RNA-sequencing pooled CRISPR screens) present an opportunity for exploring such genetic interactions (GIs) at scale. Here, we present an analytical framework for interpreting high-dimensional landscapes of cell states (manifolds) constructed from transcriptional phenotypes. We applied this approach to Perturb-seq profiling of strong GIs mined from a growth-based, gain-of-function GI map. Exploration of this manifold enabled ordering of regulatory pathways, principled classification of GIs (e.g., identifying suppressors), and mechanistic elucidation of synergistic interactions, including an unexpected synergy between CBL and CNN1 driving erythroid differentiation. Finally, we applied recommender system machine learning to predict interactions, facilitating exploration of vastly larger GI manifolds.
DOI: 10.1126/science.aax4438
Source:https://science.sciencemag.org/content/365/6455/786
Science:《科學》,創刊於1880年。隸屬於美國科學促進會,最新IF:41.037