衝刺2019年高考數學,典型例題分析128:三角函數相關綜合問題...

2021-01-08 吳國平數學教育

典型例題分析1:

要得到函數y=sin(2x+2π/3)得圖象,只需將y=sin2x的圖象(  )

A.向左平移π/6個單位

B.向右平移π/6個單位

C.向左平移π/3個單位

D.向左平移π/3個單位

解:y=sin(2x+2π/3)=sin2(x+π/3),

所以,要得到函數y=sin(2x+2π/3)得圖象,

只需將y=sin2x的圖象向左平移π/3個單位,

故選D.

考點分析:

函數y=Asin(ωx+φ)的圖象變換.

題幹分析:

利用圖象的平移變換規律可得答案.

典型例題分析2:

若f(x)=sin3x+acos2x在(0,π)上存在最小值,則實數a的取值範圍是(  )

A.(0,3/2) B.(0,3/2] C.[3/2,+∞) D.(0,+∞)

解:設t=sinx,由x∈(0,π)得t∈(0,1],

∵f(x)=sin3x+acos2x=sin3x+a(1﹣sin2x),

∴f(x)變為:y=t3﹣at2+a,

則y′=3t2﹣2at=t(3t﹣2a),

由y′=0得,t=0或t=2a/3,

∵f(x)=sin3x+acos2x在(0,π)上存在最小值,

∴函數y=t3﹣at2+a在(0,1]上遞減或先減後增,

即2a/3>0,得a>0,

∴實數a的取值範圍是(0,+∞),

故選:D.

考點分析:

三角函數的最值.

題幹分析:

設t=sinx,由x∈(0,π)和正弦函數的性質求出t的範圍,將t代入f(x)後求出函數的導數,求出臨界點,根據條件判斷出函數的單調性,由導數與函數單調性的關系列出不等式,求出實數a的取值範圍.

相關焦點

  • 衝刺2019年高考數學,典型例題分析37:不等式三角函數相關綜合題
    考點分析:一元二次不等式的解法;三角函數中的恆等變換應用.題幹分析:(1)計算tan∠APH與tan∠BPH的值,利用兩角差的正切公式求出tan∠APB的值;(2)設PH=x,x∈(0,100),計算tan∠APH、tan∠BPH的值,求出tan∠APB的解析式,利用基本不等式求出它的最大值即可.
  • 衝刺2019年高考數學,典型例題分析108: 與平面向量相關高考題
    典型例題分析1:考點分析:平面向量數量積的運算;正弦函數的圖象.題幹分析:由f(x)=2sin(πx/6+π/3)=0,結合已知x的範圍可求A,設B(x1,y1),C(x2,y2),由正弦函數的對稱性可知B,C兩點關於A對稱即x1+x2=8,y1+y2=0,代入向量的數量積的坐標表示即可求解。典型例題分析2:考點分析:平面向量的坐標運算.
  • 衝刺19年高考數學,典型例題分析264:三角函數有關的題型
    典型例題分析1:在平面直角坐標系xOy中,角θ的終邊經過點P(﹣2,t),且sinθ+cosθ=√5/5,則實數t的值為   .考點分析:任意角的三角函數的定義.題幹分析:根據三角函數的定義求出sinθ,cosθ,解方程即可得到結論.典型例題分析2:已知sin2α=2/3,則tanα+1/tanα=(  )A.1B.2C.4D.3考點分析:二倍角的正弦;三角函數的化簡求值.
  • 衝刺2019年高考數學,典型例題分析82:同角三角函數間基本關係
    典型例題分析1:已知tanx=4/3,且x在第三象限,則cosx=(  )A.4/5 B.-4/5 C.3/5 D.-3/5解:因為tanx=4/3,且x在第三象限,所以sinx/cosx=4/3並且sin2x+cos2x=1
  • 衝刺2018年高考數學,典型例題分析56:正弦函數圖象相關題型
    考點分析:三角函數中的恆等變換應用;正弦函數的圖象.三角函數是解決數學問題的一種重要的工具,高考中三角函數問題可以化為f(x)=Asin(ωx+φ)+b形式的三角函數問題。題幹分析:(1)利用二倍角公式和兩角和公式化簡函數解析式,由題意可得cos(2x+π/4)=﹣1/2,根據x∈(0,π),利用餘弦函數的性質即可得解.(2)由x∈[0,π/2],可得2x+π/4∈[π/4,5π/4],利用餘弦函數的圖象和性質可得f(x)的最小值,此時2x+π/4=π,即x=3π/8.
  • 高考數學:三角函數專題典型例題+解析,強烈建議高中生做一遍!
    【距離2020年高考還有81天!】高中數學三角函數最困擾了!很多同學感覺數學很難提分,其中三角函數當屬最難,尤其後面很多知識都會和三角函數結合使用,比如平面向量、解三角形、數列等等。但其實三角函數很常見、很容易。
  • 衝刺19年高考數學,典型例題分析235:三角函數有關的題型講解
    典型例題分析1:函數f(x)=cos(π/2﹣x)的最小正周期是   .解:函數f(x)=cos(π/2﹣x)=sinx∴f(x)的最小正周期是2π.考點分析:三角函數的周期性及其求法.題幹分析:化函數f(x)=cos(π/2﹣x)=sinx,寫出它的最小正周期.
  • 數學解三角函數的必備知識+典型例題,高考都在考,務必掌握吃透
    三角函數這一章節的內容在高考中還是比較重要的一個章節,在高考數學中的各類題型中都是會考到的,所以同學們還是需要好好地去掌握住這一章節的內容。三角函數必備的知識點有四點,第一點是直角三角形中各元素之間的關係;第二點是斜三角形中各元素間的關係;第三點是三角形任何一邊的平方等於其他兩邊平方的和減去這兩邊與它們夾角的餘弦的積的兩倍,即餘弦定理;第四點是解三角形的相關知識點,這些都是解三角函數的基礎知識點,要是連這四點都沒有掌握住的話,那麼又怎麼可能去解三角函數呢?
  • 2019年高考北京卷數學考前知識分析
    2019年高考臨近,多數考生的狀態是焦慮緊張興奮,越臨近高考,很多同學有些不知所措,是應該回歸教材複習概念,是繼續刷題,還是整理錯題,想要同時兼顧,發現時間又不夠,因為高考數學知識量大,捉襟見肘,接下來我從專業的角度出發,指出高頻考點命題方向
  • 衝刺2019年高考數學,典型例題分析30:三角函數有關的實際問題
    考點分析:在實際問題中建立三角函數模型.題幹分析:(1)過點O作OH⊥FG於H,寫出透光面積S關於θ的解析式S,並求出θ的取值範圍;(2)計算透光區域與矩形窗面的面積比值,構造函數,利用導數判斷函數的單調性,求出比值最大時對應邊AB的長度.
  • 衝刺2018年高考數學,典型例題分析82:橢圓相關綜合題型
    考點分析:橢圓的簡單性質.題幹分析:(1)根據橢圓的定義,求得丨PF1丨=3a/2=3|PF2|,根據點到直線的距離公式,即可求得c的值,則求得a的值,b2=a2﹣c2=4,即可求得橢圓方程;(2)當直線l⊥x軸,將直線x=m代入橢圓方程,求得A和B點坐標,由向量數量積的坐標運算,即可求得m的值,求得O到直線
  • 衝刺19年高考數學,典型例題分析261:等比數列的題型講解
    典型例題分析1:在正項等比數列{an}中,a1008a1009=1/100,則lga1+lga2+…+lga2016=(  )A.2015B.2016C.﹣2015D.﹣2016解:由正項等比數列{an}的性質可得
  • 衝刺19年高考數學,典型例題分析211:簡單線性規劃相關的題型
    典型例題分析1:考點分析;簡單線性規劃.題幹分析:作出不等式組對應的平面區域,利用兩點間的距離公式,以及數形結合進行求解即可.典型例題分析2:考點分析:簡單線性規劃.題幹分析:作出不等式組對應的平面區域,根據點到直線的距離公式進行轉化求解即可.
  • 衝刺19年高考數學,典型例題分析237:三角函數相關的題型講解
    典型例題分析1:將函數y=sin(2x+π/3)+2的圖象向右平移π/6個單位,再向下平移2個單位所得圖象對應函數的解析式是   .考點分析:函數y=Asin(ωx+φ)的圖象變換.題幹分析:根據函數圖象平移變換「左加右減,上加下減」的原則,結合平移前函數的解析式及函數平移方式,可得答案.
  • 高中數學!三角函數典型例題+解析,高中生來看,吃透提高30分!
    大家好,今天小編給大家帶來了北大博士邱崇學長給大家總結的高中三角函數的典型例題。喜歡的同學記得收藏關注哦!三角函數是高中數學的重要內容,不管是在課堂學習中,還是考試的時候,三角函數一直都是重點照顧對象,它蘊含著豐富的數學思維方法。
  • 衝刺2019年高考數學,典型例題分析58:與程序框圖有關的題型
    典型例題分析1:如圖所示程序框圖,其功能是輸入x的值,輸出相應的y值,若要使輸入的x值與輸出的y值相等,則這樣的x值有(  )考點分析:典型例題分析2:如圖是秦九韶算法的一個程序框圖,則輸出的S為(  )解:由秦九韶算法,S=a0+x0(a1+x0(a2+a3x0)),故選:C.
  • 衝刺2019年高考數學,典型例題分析31:客觀題講解分析
    典型例題分析1:設a=20.3,b=0.32,c=logx(x2+0.3)(x>1),則a,b,c的大小關係是(  )A.a<b<c B.b<a<c C.c<b<a D.b<c<a解:∵a=20.3<21=2且a=20.3>20=1,∴1
  • 衝刺2018年高考數學,典型例題分析62:極坐標方程相關的題型
    考點分析:簡單曲線的極坐標方程;參數方程化成普通方程.題幹分析:(Ⅰ)直線l的極坐標方程化為ρcosθ﹣ρsinθ﹣1=0,由x=ρcosθ,y=ρsinθ,能求出直線l的普通方程;曲線C的參數方程消去參數能求出曲線C的普通方程.
  • 高考數學衝刺,三角函數有關的綜合題,你會了嗎?
    典型例題分析1:複數z=cos2π/3+isin2π/3在複平面內對應的點在(  )A.第一象限B.第二象限C.第三象限典型例題分析2:已知函數f(x)=4sinxcos(x﹣π/6)+1.(Ⅰ)求函數f(x)的最小正周期;(Ⅱ)求函數f(x)在區間上的最大值.
  • 衝刺19年高考數學,典型例題分析142:等比數列有關的題型
    典型例題分析1:已知正項等比數列{an}中,a1=1,其前n項和為Sn(n∈N*),且1/a1-1/a2=2/a3,則S4=   .考點分析:等比數列的前n項和.題幹分析:由題意先求出公比,再根據前n項和公式計算即可.典型例題分析2:在公比為q且各項均為正數的等比數列{an}中,Sn為{an}的前n項和.若a1=1/q2,且S5=S2+2,則q的值為   .考點分析:等比數列的前n項和.