衝刺2018年高考數學,典型例題分析82:橢圓相關綜合題型

2020-12-06 吳國平數學教育

考點分析:

橢圓的簡單性質.

題幹分析:

(1)根據橢圓的定義,求得丨PF1丨=3a/2=3|PF2|,根據點到直線的距離公式,即可求得c的值,則求得a的值,b2=a2﹣c2=4,即可求得橢圓方程;

(2)當直線l⊥x軸,將直線x=m代入橢圓方程,求得A和B點坐標,由向量數量積的坐標運算,即可求得m的值,求得O到直線l的距離;當直線AB的斜率存在時,設直線方程,代入橢圓方程,由韋達定理及向量數量積的坐標運算,點到直線的距離公式,即可求得O到直線l的距離為定值.

解題反思:

圓錐曲線是高中數學一塊重要的內容,也是學生學習中經常望而生畏的一個難點。如何破解難點, 提升考生對這塊知識的解題能力,除了必要的常規訓練,數學思維培養外,大家還要適當地挖掘圓錐曲線中一些重要性質,體會這些經典性質的應用。

橢圓的幾何性質深刻地揭示了圓錐曲線的本質特徵,而圓錐曲線幾何性質的證明,又能很好地體現解析幾何的思想與方法。

焦點弦問題一直是近幾年全國各地高考的熱點內容之一,也是圓錐曲線研究的重點內容之一,這其中不僅僅滲透了數形結合、方程思想,還融入了平面幾何、三角函數的知識,同時還體現了整體思維觀。

相關焦點

  • 衝刺2019年高考數學,典型例題分析108: 與平面向量相關高考題
    典型例題分析1:考點分析:平面向量數量積的運算;正弦函數的圖象.題幹分析:由f(x)=2sin(πx/6+π/3)=0,結合已知x的範圍可求A,設B(x1,y1),C(x2,y2),由正弦函數的對稱性可知B,C兩點關於A對稱即x1+x2=8,y1+y2=0,代入向量的數量積的坐標表示即可求解。典型例題分析2:考點分析:平面向量的坐標運算.
  • 衝刺19年高考數學,典型例題分析261:等比數列的題型講解
    典型例題分析1:在正項等比數列{an}中,a1008a1009=1/100,則lga1+lga2+…+lga2016=(  )A.2015B.2016C.﹣2015D.﹣2016解:由正項等比數列{an}的性質可得
  • 衝刺2018年高考數學,典型例題分析79:線性回歸方程相關題型
    (2)隨著節目的播出,極大激發了觀眾對成語知識的學習積累的熱情,從中獲益匪淺.現從觀看該節目的觀眾中隨機統計了4位觀眾的周均學習成語知識的時間y(單位:小時)與年齡x(單位:歲),並製作了對照表(如表所示)考點分析
  • 吳國平:2018年高考數學準備戰,衝刺數列求和問題
    從2017年高考數學及歷年試題分布來看,數列求和問題一直高考數學的熱點和重點。這對於參加2018年高考的考生來說,是一個很好的啟發,可以提早準備,為高考打下一個紮實基礎。數列作為高中數學的重要學習內容之一,又是學習高等數學的基礎,它是初等數學與高等數學的一個重要銜接點。高考對數列的考查比較全面,可以說每年都不會遺漏。
  • 衝刺2018年高考數學,典型例題分析62:極坐標方程相關的題型
    考點分析:簡單曲線的極坐標方程;參數方程化成普通方程.題幹分析:(Ⅰ)直線l的極坐標方程化為ρcosθ﹣ρsinθ﹣1=0,由x=ρcosθ,y=ρsinθ,能求出直線l的普通方程;曲線C的參數方程消去參數能求出曲線C的普通方程.
  • 衝刺2019年高考數學,典型例題分析58:與程序框圖有關的題型
    典型例題分析1:如圖所示程序框圖,其功能是輸入x的值,輸出相應的y值,若要使輸入的x值與輸出的y值相等,則這樣的x值有(  )考點分析:典型例題分析2:如圖是秦九韶算法的一個程序框圖,則輸出的S為(  )解:由秦九韶算法,S=a0+x0(a1+x0(a2+a3x0)),故選:C.
  • 衝刺19年高考數學,典型例題分析211:簡單線性規劃相關的題型
    典型例題分析1:考點分析;簡單線性規劃.題幹分析:作出不等式組對應的平面區域,利用兩點間的距離公式,以及數形結合進行求解即可.典型例題分析2:考點分析:簡單線性規劃.題幹分析:作出不等式組對應的平面區域,根據點到直線的距離公式進行轉化求解即可.
  • 衝刺19年高考數學,典型例題分析263:雙曲線有關的題型講解
    典型例題分析1:焦點為(6,0)且與雙曲線x2/2﹣y2有相同漸近線的雙曲線的方程為 (  )A.x2/24﹣y2/12=1B.y2/12﹣x2/24=1考點分析:雙曲線的簡單性質.題幹分析:設所求的雙曲線方程是x2/2﹣y2=K,由焦點(6,0)在x軸上,知 k>0,截距列出方程,求出k值,即得所求的雙曲線方程.
  • 衝刺2018年高考數學, 典型例題分析25:線性回歸方程
    某公司要推出一種新產品,分6個相等時長的時段進行試銷,並對賣出的產品進行跟蹤以及收集顧客的評價情況(包括產品評價和服務評價),在試銷階段共賣出了480件,通過對所賣出產品的評價情況和銷量情況進行統計,一方面發現對該產品的好評率為5/6,對服務的好評率為0.75,對產品和服務兩項都沒有好評有30件,另一方面發現銷量和單價有一定的線性相關關係,具體數據如下表:考點分析
  • 衝刺2018年高考數學,典型例題分析56:正弦函數圖象相關題型
    考點分析:三角函數中的恆等變換應用;正弦函數的圖象.三角函數是解決數學問題的一種重要的工具,高考中三角函數問題可以化為f(x)=Asin(ωx+φ)+b形式的三角函數問題。題幹分析:(1)利用二倍角公式和兩角和公式化簡函數解析式,由題意可得cos(2x+π/4)=﹣1/2,根據x∈(0,π),利用餘弦函數的性質即可得解.(2)由x∈[0,π/2],可得2x+π/4∈[π/4,5π/4],利用餘弦函數的圖象和性質可得f(x)的最小值,此時2x+π/4=π,即x=3π/8.
  • 衝刺19年高考數學,典型例題分析264:三角函數有關的題型
    典型例題分析1:在平面直角坐標系xOy中,角θ的終邊經過點P(﹣2,t),且sinθ+cosθ=√5/5,則實數t的值為   .考點分析:任意角的三角函數的定義.題幹分析:根據三角函數的定義求出sinθ,cosθ,解方程即可得到結論.典型例題分析2:已知sin2α=2/3,則tanα+1/tanα=(  )A.1B.2C.4D.3考點分析:二倍角的正弦;三角函數的化簡求值.
  • 衝刺19年高考數學,典型例題分析262:數列求和的題型
    典型例題分析1:已知數列{an}的通項公式為an=n+cos(nπ/2),Sn為其前n項和,則S100=   .考點分析:數列的求和.題幹分析:通過記bn=cos(nπ/2)可知數列{bn}是以4為周期的周期數列,且b1+b2+b3+b4=0,進而利用等差數列的求和公式計算即得結論.
  • 衝刺2019年高考數學,典型例題分析62:與排列組合有關的題型
    典型例題分析1:甲、乙、丙3位志願者安排在周一至周六的六天中參加某項志願者活動,要求每人參加一天且每天至多安排一人,並要求甲安排在另外兩位前面,不同的安排放法共有(  )A.20種 B.30種 C.40種 D.60種解:根據題意,先在周一至周六的六天中任選
  • 衝刺19年高考數學,典型例題分析149:與複數有關的題型
    典型例題分析1:已知複數z滿足iz=3﹣4i(其中i為虛數單位),則|z|=   .解:複數z滿足iz=3﹣4i(其中i為虛數單位),∴﹣iiz=﹣i(3﹣4i),∴z=﹣3i﹣4.則|z|=5.考點分析:複數代數形式的乘除運算.題幹分析:利用複數的運算法則、模的計算公式即可得出.
  • 衝刺2019年高考數學,典型例題分析56:學會求函數的導數
    解題反思:求參數的取值範圍是一類活躍在高考導數題中的熱點問題,求解策略一般有三種:(1)分離參數法;(2)分類討論法;(3)數形結合法。微積分的創立是數學發展中的裡程碑,它的發展和廣泛應用開創了向近代數學過渡的新時期,為研究變量和函數提供了重要的方法和手段。導數概念是微積分的核心概念之一,它有極其豐富的實際背景和廣泛的應用。高考中對導數的概念及其幾何意義的考查較簡單,主要考查導數的幾何意義。「函數與導數」專題,在高考數學試題中仍佔有很大的分值。
  • 衝刺2019年高考數學,典型例題分析89:與複數有關的題型講解
    典型例題分析1:複數z1,z2在複平面內對應的點關於直線y=x對稱,且z1=3+2i,則z2=(  )A.3﹣2i B.2﹣3i C.﹣3﹣2i D.2+3i解:複數z1在複平面內關於直線y=x對稱的點表示的複數z2=2+3i,故選:D.
  • 衝刺19年高考數學,典型例題分析142:等比數列有關的題型
    典型例題分析1:已知正項等比數列{an}中,a1=1,其前n項和為Sn(n∈N*),且1/a1-1/a2=2/a3,則S4=   .考點分析:等比數列的前n項和.題幹分析:由題意先求出公比,再根據前n項和公式計算即可.典型例題分析2:在公比為q且各項均為正數的等比數列{an}中,Sn為{an}的前n項和.若a1=1/q2,且S5=S2+2,則q的值為   .考點分析:等比數列的前n項和.
  • 衝刺2018年高考數學,典型例題分析28:曲線的極坐標方程
    考點分析:簡單曲線的極坐標方程.題幹分析:(1)求得C1的標準方程,及曲線C2的標準方程,則圓心C1到x=3距離d,點P到曲線C2的距離的最大值dmax=R+d=6;(2)將直線l的方程代入C1的方程,求得A和B點坐標,求得丨AB丨,利用點到直線的距離公式,求得C1到AB的距離d,即可求得△ABC1的面積.
  • 衝刺2018年高考數學,典型例題分析39:直線與橢圓的位置關係 - 吳國...
    考點分析:直線與橢圓的位置關係.題幹分析:(Ⅰ)直線y=x﹣1與x軸的交點坐標為(1,0),得橢圓C:x2/a2+y2/b2=1(a>b>0)的半焦距c.又離心率e=c/a=1/3,得a2=9,b2=8.即可求出橢圓方程.
  • 衝刺2018年高考數學,典型例題分析67:數列求和相關綜合題型 - 吳國...
    考點分析:數列的求和;數列遞推式.題幹分析:(1)運用數列的遞推式和等差數列的定義和通項公式,即可得到所求;(2)方法一、設數列{bn}的公差為d,求出Sn,Tn.由恆成立思想可得b1<1,求出an﹣bn,判斷符號即可得證;方法二、運用反證法證明,設{bn}的公差為d,假設存在自然數n0≥2,使得不等式成立,推理可得d>2,作差Tn﹣Sn,推出大於0,即可得證;