七年級數學因式分解的7種方法,你知道了幾種?

2020-11-25 胡說評教育

編首語:因式分解在中考中佔據了很大的比例,因式分解常常穿插在綜合題裡,然而在初中的數學教材中主要介紹了提公因式法、公式法、十字相乘法(初三教材有詳細的講解),並且在高中的數學函數中,十字相乘用的頻率是比較多的。除此之外,在一些課外書或者競賽習題裡,對因式分解的方法還有待定係數法,換元法,求根公式法,分組分解法。

一、提公因式法

1.含義和概念:公因式是指各項都含有公共的因式。

提公因式法是指當一個多項式的各項都有公因式時,把這個公因式提出來,將多項式化成兩個或多個因式乘積的形式。

2.典型例題:

提公因式法因式分解

解題思路:仔細觀察這個多項式,會發現加號左右兩邊都有公因式x,則可以把x提出來,所以原題可等於x(x+6)

二、公式法:

1.含義和概念:公式法主要是指平方差公式,完全平方公式,立方差公式,立方和公式

平方差公式
立方和與立法差公式
完全平方gong'shi

2.典型例題:

公式法因式分解

解題思路:分析(1)對比平方差公式可先提取xy後,出現了一個平方差公式,直接用平方差公式即可解決(2)對比完全平方公式可先提取ab.解法如下:

公式法因式分解

三、十字相乘:

1.含義和概念:十字相乘法口訣:首尾分解,交叉相乘,求和湊中

2.典型例題:

十字相乘法
十字相乘法因式分解

解題技巧:把x的平方分成x乘x,8分成-2乘-4,然後交叉相乘-4x-2x=-6x,正好等於中間的數,符合,因此寫成(x-2)(x-6)

四、待定係數法

首先判斷出分解因式的形式,然後設出相應整式的字母係數,求出字母係數,從而把多項式因式分解。

五、換元法

有時在分解因式時,可以選擇多項式中的相同的部分換成另一個未知數,然後進行因式分解,最後再轉換回來,這種方法叫做換元法。

換元法因式分解

注意:換元後勿忘還元.

六、求根公式法

令多項式f(x)=0,求出其根為x1,x,x3,……xn,

則該多項式可分解為f(x)=(x-x1)(x-x2)(x-x3)……(x-xn)

七、分組分解法

能分組分解的方程有四項或大於四項,一般的分組分解有兩種形式:二二分法,三一分法。

比如: ax+ay+bx+by =a(x+y)+b(x+y) =(a+b)(x+y)

我們把ax和ay分一組,bx和by分一組,利用乘法分配律,兩兩相配,立即解除了困難

練習題: 5ax+5bx+3ay+3by

解法:=5x(a+b)+3y(a+b) =(5x+3y)(a+b)

說明:係數不一樣一樣可以做分組分解,和上面一樣,把5ax和5bx看成整體,把3ay和3by看成一個整體,利用乘法分配律輕鬆解出。

總之,在進行因數分解時要注意三原則

1. 分解要徹底 

2. 最後結果只有小括號

3. 最後結果中多項式首項係數為正

相關焦點

  • 七年級數學利用提公因式法分解因式中,小心「符號」的陷阱
    編首語:義務教育數學課程標準(2011年版)指出:「符號意識主要指能夠理解並且運用符號表示數、數量關係和變化規律:知道使用符號可以進行運算和推理,得到的結論具有一般性。建立符號意識有助於學生理解符號的使用是數學表達和進行數學思考的重要形式。」
  • 2021初中七年級數學公式:因式分解
    中考網整理了關於2021初中七年級數學公式:因式分解,希望對同學們有所幫助,僅供參考。   因式分解   一提二套三分組,十字相乘也上數。   四種方法都不行,拆項添項去重組。   重組無望試求根,換元或者算餘數。   多種方法靈活選,連乘結果是基礎。
  • 得因式分解者得初等數學,8年級是該衝刺一把了!
    8年級目前進度應該學到了分式(北師版),對於剛講過的因式分解,你學會了嗎?通過給孩子們的測評,測評反饋主要集中在這幾個點上:1-因式分解中常見的公式法不熟練,尤其是對於應用到配方法問題,增添項很麻木。2-因式分解中獨特的「十字相乘法」同學們不會拆,不明白怎麼回事。3-因式分解中「整體性」思維欠妥,考慮問題比較生硬死板!
  • 2021初中七年級數學必備公式:乘法與因式分解
    中考網整理了關於2021初中七年級數學必備公式:乘法與因式分解,希望對同學們有所幫助,僅供參考。   乘法與因式分解   a2-b2=(a+b)(a-b)   a3+b3=(a+b)(a2-ab+b2)   a3-b3=(a-b)(a2+ab+b2)   相關推薦:   2021年全國各省市中考報名時間匯總   2021年全國各地中考體育考試方案匯總
  • 八年級數學,因式分解高端方法及恆等變形,3方法讓你更上一層樓
    因式分解是中學數學中最重要的恆等變形之一,它被廣泛地運用於數學中,在解一元二次方程和代數式求值方面有著廣泛運用,是解決許多問題的有力工具。在初中階段因式分解的基礎方法有提公因式法、公式法和十字相乘法,相信這些方法已經難不倒八年級的你,今天我們主要介紹三種高端的方法,希望能幫助你更上一層樓。首先要介紹的是換元法。換元法作為一種因式分解的常用方法,其實質是整體代換思想,當看作整體的多項式比較複雜時,應用換元法能起到簡化的作用,比如下面這道例題。
  • 初中數學培優 七年級下 第八講 因式分解(初中競賽難點之一)
    中國目前初中數學教育大綱基於以下這個情況,即絕大多數人現實生活中只會用到三年級以下的數學,因此難度下降很大,屬於普遍教育。而高中數學的難度並沒有下降,因此初高中之間的銜接存在著很大的困難。我曾經遇到過本地區最好的公辦初中的一個學生,她在初中排在年級前20名(年級總共500多學生),但是進入高中後感覺非常吃力,跟不上進度。
  • 八年級數學,整式整除與因式分解考點總結,為你學習導航
    我在七年級學了用字母表示數,用含字母的式子表示實際問題中的數量關係。《整式的乘除與因式分解》讓我們學到許多常用的重要運算性質和公式,知道更多的數量關係。本章的重點有3個:(1)整式的乘除法運算法則;(2)乘法公式;(3)因式分解。
  • 初中數學因式分解的12種方法總結,課本重難點,非常實用!
    因式分解是初中一個重點,它牽涉到分式方程,一元二次方程,所以很有必要學會一些基本的因式分解的方法。在做數學題的時候,很多同學可能會面臨不知道該怎麼做的情況,這是很常見的事情,畢竟,數學的知識點要想理解清楚,其實並不算太難,但要想靈活運用的話,就很困難了。
  • 初中數學培優 七年級下 第九講 因式分解的應用 許多競賽題講解
    中國目前初中數學教育大綱基於以下這個情況,即絕大多數人現實生活中只會用到三年級以下的數學,因此難度下降很大,屬於普遍教育。而高中數學的難度並沒有下降,因此初高中之間的銜接存在著很大的困難。我曾經遇到過本地區最好的公辦初中的一個學生,她在初中排在年級前20名(年級總共500多學生),但是進入高中後感覺非常吃力,跟不上進度。
  • 初一下學期,因式分解常用的六種方法,你掌握了幾種?
    在前一篇文章中,我們分享了因式分解的作用:(1)逆用公式求代數式的值;(2)簡便運算;(3)整體思想求代數式的值;(4)整數解問題;(5)判斷三角形的形狀。本篇文章中,我們分享下因式分解常用的六種方法,看一下自己掌握了幾種。
  • 2021年初中八年級數學公式:因式分解
    中考網整理了關於2021年初中八年級數學公式:因式分解,希望對同學們有所幫助,僅供參考。   因式分解   一提二套三分組,十字相乘也上數。   四種方法都不行,拆項添項去重組。   重組無望試求根,換元或者算餘數。   多種方法靈活選,連乘結果是基礎。
  • 初中數學競賽:因式分解常用方法之一——公式法
    大家好,我是啊年,今天我們來學習一下初中數學競賽題,咱們常用到的解決因式分解問題方法——公式法,當然啦,平時考試的時候,這個方法也是經常用到的。)(6)完全立方和公式:a+3ab+3ab+b=(a+b)(7)完全立方差公式:a-3ab+3ab-b=(a-b)(8)a+b+c+2ab+2bc+2ca=(a+b+c)(9)a+b+c-3abc=(a+b+c)(a+b+c-ab-bc-ca)接下來我們看幾道例題~典型例題例1 分解因式:x-8y-z-
  • 九年級數學:因式分解法解方程知識精講+同步訓練,果斷收藏
    九年級的同學這幾天正在學習一元二次方程,我們知道一元二次方程的解法常用的有直接開平方法、配方法、公式法、因式分解法,4種方法可以結合題目的具體特點來選擇靈活運用。上一節內容中我們整理了公式法解一元二次方程的相關知識點和訓練題目,本節內容將繼續推送因式分解法解方程的知識要點和同步訓練。因式分解我們在八年級的時候就已經學習過了,常用的因式分解方法有:提公因式法,公式法(平方差公式,完全平方公式),十字相乘法,所以在用因式分解法解方程時,關鍵的還是能夠對式子進行正確的因式分解,如果不能正確分解因式,求出方程的根指定就是錯誤的。
  • 2021初中七年級代數知識點:因式分解法9大方式
    中考網整理了關於2021初中七年級代數知識點:因式分解法9大方式,希望對同學們有所幫助,僅供參考。   用平方差公式因式分解速記口訣   用平方差公式因式分解   異號兩個平方項,因式分解有辦法。   兩底和乘兩底差,分解結果就是它。
  • 【初中數學】因式分解的九種方法
    一、運用公式法     我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。於是有:     a^2-b^2=(a+b)(a-b)     a^2+2ab+b^2=(a+b)^2     a^2-2ab+b^2=(a-b)^2     如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。
  • 學好因式分解 你做題1000不如熟練這5個分解思維
    因式分解這個章節有點特殊,中考一般都不直接考察因式的分解,而是穿插到題目中,但很多題目都必須要通過因式分解,把式子先分解,化簡然後再求值,計算。如果你因式分解不夠徹底,接下來的題目根本就不會做。很多人題目做到一半就做不下去原因就是因式分解不過關。它對於初中和高中代數來說都是一個非常重要的知識點。
  • 四種方法巧解初中因式分解計算題,掌握方法拿高分
    在初中數學計算題中,因式分解算是較難的一種。但是,在初中一些大型考試中直接考因式分解的題很少,但是用到因式分解的題卻很多,在分式、二次根式、二次方程、二次不等式、二次函數、根式防塵、分式方程甚至幾何中都要用到因式分解。許多同學解題拿不下的原因就是因式分解的掌握不過關。
  • 一道白俄羅斯初中數學競賽題:分解因式,難住不少學霸
    大家好,今天和大家分享一道白俄羅斯的初中數學競賽題:分解因式a^4-3a+4a-3。這道題看似簡單,卻難住了不少初中的學霸,還有網友調侃到:以為只有中國才學這些東西呢,沒想到大家都在學啊,還真是公平。因式分解是中學數學非常重要的一個知識點,在解一元二次方程、一元二次不等式、二次函數、化簡求值等題型中經常都會用到。書本中因式分解的題目一般比較簡單,考查的方法主要有提公因式法、公式法和十字相乘法等,其中最重要的還是十字相乘法。下面我們一起來看一下這道白俄羅斯的競賽題。這道題是一個4次多項式的分解,下面介紹3種方法。
  • 初中數學:因式分解及其常用方法、技巧和應用
    因式分解是初中數學的難點,也是初中數學的重要內容之一,是學習分式、根式、和一元二次方程的重要基礎,是解決許多數學問題的重要「工具」,也是中考的一個重要考點,所以學好因式分解很重要,下面跟著二哥一起學習一下吧。因式分解:把一個多項式化成幾個整式的積的形式,叫作多項式的因式分解。
  • 十二種因式分解方法,絕對乾貨!
    >由於分解因式與整式乘法有著互逆的關係,如果把乘法公式反過來,那麼就可以用來把某些多項式分解因式。如,和的平方、差的平方▲分組分解法>要把多項式am+an+bm+bn分解因式,可以先把它前兩項分成一組,並提出公因式a,把它後兩項分成一組,並提出公因式b,從而得到a(m+n)+b(m+n),又可以提出公因式m+n,從而得到(a+b)(m+n)