【初中數學】因式分解的九種方法

2020-11-25 中考網

  一、運用公式法

 

  我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。於是有:

 

  a^2-b^2=(a+b)(a-b)

 

  a^2+2ab+b^2=(a+b)^2

 

  a^2-2ab+b^2=(a-b)^2

 

  如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。

 

  二、平方差公式

 

  1、式子: a^2-b^2=(a+b)(a-b)

 

  2、語言:兩個數的平方差,等於這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。

 

  三、因式分解

 

  1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。

 

  2.因式分解,必須進行到每一個多項式因式不能再分解為止。

 

  四、完全平方公式

 

  1、把乘法公式(a+b)^2=a^2+2ab+b^2 和 (a-b)^2=a^2-2ab+b^2反過來,

 

  就可以得到:a^2+2ab+b^2=(a+b)^2 和 a^2-2ab+b^2=(a-b)^2,這兩個公式叫完全平方公式。

 

  這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等於這兩個數的和(或者差)的平方。

 

  把a^2+2ab+b^2和a^2-2ab+b^2這樣的式子叫完全平方式。

 

  2、完全平方式的形式和特點:①項數:三項;②有兩項是兩個數的的平方和,這兩項的符號相同;③有一項是這兩個數的積的兩倍。

 

  3、當多項式中有公因式時,應該先提出公因式,再用公式分解。

 

  4、完全平方公式中的a、b可表示單項式,也可以表示多項式。這裡只要將多項式看成一個整體就可以了。

 

  5、分解因式,必須分解到每一個多項式因式都不能再分解為止。

 

  五、分組分解法

 

  我們看多項式am+an+bm+bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。

 

  如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式。

 

  原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)

 

  做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義。但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以:原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)×(a+b).

 

  這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組並提取公因式後它們的另一個因式正好相同,那麼這個多項式就可以用分組分解法來分解因式。

 

  六、提公因式法

 

  1、在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結構特點,確定多項式的公因式.當多項式各項的公因式是一個多項式時,可以用設輔助元的方法把它轉化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當多項式各項的公因式是隱含的時候,要把多項式進行適當的變形,或改變符號,直到可確定多項式的公因式.

 

  2、運用公式x^2 +(p+q)x+pq=(x+q)×(x+p)進行因式分解要注意:

 

  (1)必須先將常數項分解成兩個因數的積,且這兩個因數的代數和等於一次項的係數。

 

  (2)將常數項分解成滿足要求的兩個因數積的多次嘗試,一般步驟:

 

  ① 列出常數項分解成兩個因數的積各種可能情況;

 

  ②嘗試其中的哪兩個因數的和恰好等於一次項係數。

 

  3、將原多項式分解成(x+q)(x+p)的形式。

 

  七、分式的乘除法

 

  1、把一個分式的分子與分母的公因式約去,叫做分式的約分。

 

  2、分式進行約分的目的是要把這個分式化為最簡分式。

 

  3、如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分。

 

  4、分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)^2=(y-x)^2, (x-y)^3=-(y-x)^3。

 

  5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然後再按-1的偶次方為正、奇次方為負來處理.當然,簡單的分式之分子分母可直接乘方.

 

  6.注意混合運算中應先算括號,再算乘方,然後乘除,最後算加減.

 

  八、分數的加減法

 

  1、通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來。

 

  2、通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變。

 

  3、一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備。

 

  4、通分的依據:分式的基本性質。

 

  5、通分的關鍵:確定幾個分式的公分母。通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母。

 

  6、類比分數的通分得到分式的通分:把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分。

 

  7、同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。

 

  同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。

 

  8、異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然後再加減。

 

  9、同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括號。

 

  10、對於整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分。

 

  11、異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然後再通分,這樣可使運算簡化。

 

  12、作為最後結果,如果是分式則應該是最簡分式。

 

  九、含有字母係數的一元一次方程

 

  引例:一數的a倍(a≠0)等於b,求這個數。用x表示這個數,根據題意,可得方程 ax=b(a≠0)

 

  在這個方程中,x是未知數,a和b是用字母表示的已知數。對x來說,字母a是x的係數,b是常數項。這個方程就是一個含有字母係數的一元一次方程。含有字母係數的方程的解法與以前學過的只含有數字係數的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等於零。

 

新初三快掃碼關注

 

中考網微信公眾號

 

每日推送學習技巧,學科知識點

 

助你迎接2020年中考!

 

   歡迎使用手機、平板等行動裝置訪問中考網,2020中考一路陪伴同行!>>點擊查看

相關焦點

  • 初中數學,因式分解(平方差公式)
    平方差公式是中考的必考點之一,今天給同學們複習一下平方差公式相關的習題,教你快速準確地應用平方差公式進行因式分解。#數學學習因式分解(平方差公式)(符號說明:因為網頁排版問題,在這裡a的平方記作a^2。)這道題目中的式子比較長,一些同學在看到較長的式子時一時看不出這道題該用何公式。
  • 初中數學:因式分解及其常用方法、技巧和應用
    因式分解是初中數學的難點,也是初中數學的重要內容之一,是學習分式、根式、和一元二次方程的重要基礎,是解決許多數學問題的重要「工具」,也是中考的一個重要考點,所以學好因式分解很重要,下面跟著二哥一起學習一下吧。因式分解:把一個多項式化成幾個整式的積的形式,叫作多項式的因式分解。
  • 初中數學:因式分解最全方法歸納!含例題解析,期末培優特訓
    初中數學:因式分解最全方法歸納!含例題解析,期末培優特訓「因式分解」是中考數學必考的一個知識點,從考試題型難度來看,相關的試題難度並不大,基本上都是以選擇填空和計算小題為主,但是同學們千萬不能因此就放鬆警惕。
  • 初中數學競賽:因式分解常用方法之一——公式法
    大家好,我是啊年,今天我們來學習一下初中數學競賽題,咱們常用到的解決因式分解問題方法——公式法,當然啦,平時考試的時候,這個方法也是經常用到的。)(6)完全立方和公式:a+3ab+3ab+b=(a+b)(7)完全立方差公式:a-3ab+3ab-b=(a-b)(8)a+b+c+2ab+2bc+2ca=(a+b+c)(9)a+b+c-3abc=(a+b+c)(a+b+c-ab-bc-ca)接下來我們看幾道例題~典型例題例1 分解因式:x-8y-z-
  • 初中數學因式分解的12種方法總結,課本重難點,非常實用!
    因式分解是初中一個重點,它牽涉到分式方程,一元二次方程,所以很有必要學會一些基本的因式分解的方法。在做數學題的時候,很多同學可能會面臨不知道該怎麼做的情況,這是很常見的事情,畢竟,數學的知識點要想理解清楚,其實並不算太難,但要想靈活運用的話,就很困難了。
  • 2018初中數學公式之常用的因式分解公式
    新一輪中考複習備考周期正式開始,中考網為各位初三考生整理了中考五大必考學科的知識點,主要是對初中三年各學科知識點的梳理和細化,幫助各位考生理清知識脈絡,熟悉答題思路,希望各位考生可以在考試中取得優異成績!下面是《2018初中數學公式之常用的因式分解公式》,僅供參考!
  • 初中因式分解全攻略
    因式分解是指把一個多項式分解為兩個或多個整式的積的過程。因式分解在數學求根、解一元二次方程等方面有很廣泛的應用,是解決許多數學問題的有力工具。初中所接觸的因式分解是很簡單的。方法如下:提公因式法如果一個多項式的各項有公因式,可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種分解因式的方法叫做提公因式法。例:ma+mb+mc=m(a+b+c)公式法:1、平方差公式:即兩個數的平方差,等於這兩個數的和與這兩個數的差的積。
  • 2021初中七年級數學公式:因式分解
    中考網整理了關於2021初中七年級數學公式:因式分解,希望對同學們有所幫助,僅供參考。   因式分解   一提二套三分組,十字相乘也上數。   四種方法都不行,拆項添項去重組。   重組無望試求根,換元或者算餘數。   多種方法靈活選,連乘結果是基礎。
  • 一道白俄羅斯初中數學競賽題:分解因式,難住不少學霸
    大家好,今天和大家分享一道白俄羅斯的初中數學競賽題:分解因式a^4-3a+4a-3。這道題看似簡單,卻難住了不少初中的學霸,還有網友調侃到:以為只有中國才學這些東西呢,沒想到大家都在學啊,還真是公平。因式分解是中學數學非常重要的一個知識點,在解一元二次方程、一元二次不等式、二次函數、化簡求值等題型中經常都會用到。書本中因式分解的題目一般比較簡單,考查的方法主要有提公因式法、公式法和十字相乘法等,其中最重要的還是十字相乘法。下面我們一起來看一下這道白俄羅斯的競賽題。這道題是一個4次多項式的分解,下面介紹3種方法。
  • 日本初中數學競賽題:分解因式,中國學生:確定不是送分題?
    大家好,本文和大家分享一道日本初中數學競賽題:分解因式。分解因式是初中數學非常重要的知識板塊,國內學生都會進行大量的練習,不少國內學生看到這道題後表示這就是一道送分題,甚至有學生表示這道題還沒有中考題難。下面我們一起來看一下這道題。
  • 2021年初中八年級數學公式:因式分解
    中考網整理了關於2021年初中八年級數學公式:因式分解,希望對同學們有所幫助,僅供參考。   因式分解   一提二套三分組,十字相乘也上數。   四種方法都不行,拆項添項去重組。   重組無望試求根,換元或者算餘數。   多種方法靈活選,連乘結果是基礎。
  • 初中數學,因式分解成難點,掌握方法更要知道什麼時候用
    初二數學作為難度較大的一個階段,讓很多的同學在這一年,成績出現了非常大的分化,而初二數學中的全等三角形可以說是整個初中階段幾何部分的基礎,而還有一知識點,讓很多同學感覺到難度很大,那就是因式分解。因式分解很多同學感覺難,就是感覺分解的時候做不到完全分解,或者找不到應該用什麼方法進行因式分解。下面就和大家一起交流因式分解的相關的方法,以及解題的思路。首先我們先要明確什麼是因式分解。因式分解最終要化成的形式一定是整式積的形式。也就是同學們在做因式分解的時候,最後一定要看看除去括號之外,還有沒有存在加減的情況,如果有有錯誤了。
  • 初中數學培優 七年級下 第八講 因式分解(初中競賽難點之一)
    中國目前初中數學教育大綱基於以下這個情況,即絕大多數人現實生活中只會用到三年級以下的數學,因此難度下降很大,屬於普遍教育。而高中數學的難度並沒有下降,因此初高中之間的銜接存在著很大的困難。我曾經遇到過本地區最好的公辦初中的一個學生,她在初中排在年級前20名(年級總共500多學生),但是進入高中後感覺非常吃力,跟不上進度。
  • 初中數學|因式分解常見題型匯總分析,掌握了,提分還會很難嗎
    初中數學因式分解常見題型分析,掌握了,提分還會很難嗎?因式分解是初中數學的一大難點,也是恆等式變形的基本方法之一。說得直接一點,因式分解就是為我們解決數學問題的重要工具,它的重要性和實用性可想而知。在因式分解的學習中,我們一共要學習四種方法,它們分別是提取公因式法、運用公式法、分組分解法和十字相乘法。這幾種方法各有各的特點,適用的範圍也有所不同,對於能否高效、快速的解題,取決於大家對這些方法的掌握的程度和運用的靈活性。
  • 四種方法巧解初中因式分解計算題,掌握方法拿高分
    在初中數學計算題中,因式分解算是較難的一種。但是,在初中一些大型考試中直接考因式分解的題很少,但是用到因式分解的題卻很多,在分式、二次根式、二次方程、二次不等式、二次函數、根式防塵、分式方程甚至幾何中都要用到因式分解。許多同學解題拿不下的原因就是因式分解的掌握不過關。
  • 八年級數學,因式分解高端方法及恆等變形,3方法讓你更上一層樓
    因式分解是中學數學中最重要的恆等變形之一,它被廣泛地運用於數學中,在解一元二次方程和代數式求值方面有著廣泛運用,是解決許多問題的有力工具。在初中階段因式分解的基礎方法有提公因式法、公式法和十字相乘法,相信這些方法已經難不倒八年級的你,今天我們主要介紹三種高端的方法,希望能幫助你更上一層樓。首先要介紹的是換元法。換元法作為一種因式分解的常用方法,其實質是整體代換思想,當看作整體的多項式比較複雜時,應用換元法能起到簡化的作用,比如下面這道例題。
  • 因式分解
    因式分解是中學數學中最重要的恆等變形之一,具有一定的靈活性和技巧性,下面我們在初中教材已經介紹過基本方法的基礎上,結合競賽再補充介紹添項、拆項法,待定係數法、換元法、對稱式的分解等有關內容和方法.
  • 2021初中七年級數學必備公式:乘法與因式分解
    中考網整理了關於2021初中七年級數學必備公式:乘法與因式分解,希望對同學們有所幫助,僅供參考。   乘法與因式分解   a2-b2=(a+b)(a-b)   a3+b3=(a+b)(a2-ab+b2)   a3-b3=(a-b)(a2+ab+b2)   相關推薦:   2021年全國各省市中考報名時間匯總   2021年全國各地中考體育考試方案匯總
  • 初中數學培優 七年級下 第九講 因式分解的應用 許多競賽題講解
    中國目前初中數學教育大綱基於以下這個情況,即絕大多數人現實生活中只會用到三年級以下的數學,因此難度下降很大,屬於普遍教育。而高中數學的難度並沒有下降,因此初高中之間的銜接存在著很大的困難。我曾經遇到過本地區最好的公辦初中的一個學生,她在初中排在年級前20名(年級總共500多學生),但是進入高中後感覺非常吃力,跟不上進度。
  • 七年級數學因式分解的7種方法,你知道了幾種?
    編首語:因式分解在中考中佔據了很大的比例,因式分解常常穿插在綜合題裡,然而在初中的數學教材中主要介紹了提公因式法、公式法、十字相乘法(初三教材有詳細的講解),並且在高中的數學函數中,十字相乘用的頻率是比較多的。