【學術前沿】伊成器、宋春嘯等全面總結DNA和RNA修飾的檢測方法和研究困境

2021-02-26 細胞世界

1.      Greenberg MVC, Bourc』his D (2019) The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol 20:590–607

2.      Unnikrishnan A, Freeman WM, Jackson J, Wren JD, Porter H, Richardson A (2019) The role of DNA methylation in epigenetics of aging. Pharmacol Therapeut 195:172–185

3.      Koch A, Joosten SC, Feng Z, de Ruijter TC, Draht MX, Melotte V, Smits KM, Veeck J, Herman JG, Van Neste L et al (2018) Author correction: analysis of DNA methylation in cancer: location revisited. Nat Rev Clin Oncol 15:467

4.      Li E, Zhang Y (2014) DNA methylation in mammals. Cold Spring Harb Perspect Biol 6:a019133

5.      Adey A, Shendure J (2012) Ultra-low-input, tagmentation-based whole-genome bisulfite sequencing. Genome Res 22:1139–1143

6.      Kobayashi H, Kono T (2012) DNA methylation analysis of germ cells by using bisulfite-based sequencing methods. Methods Mol Biol (Clifton, NJ) 825:223–235

7.      Yamaguchi S, Hong K, Liu R, Shen L, Inoue A, Diep D, Zhang K, Zhang Y (2012) Tet1 controls meiosis by regulating meiotic gene expression. Nature 492:443–447

8.      Tanaka K, Okamoto A (2007) Degradation of DNA by bisulfite treatment. Bioorg Med Chem Lett 17:1912–1915

9.      Liu J, Harada BT, He C (2019b) Regulation of gene expression by N (6)-methyladenosine in cancer. Trends Cell Biol 29(6):487–489

10.   Vaisvila R, Ponnaluri VKC, Sun Z, Langhorst BW, Saleh L, Guan S, Dai N, Campbell MA, Sexton B, Marks K et al (2019) EM-seq: detection of DNA methylation at single base resolution from picograms of DNA. BioRxiv Dec 23:2019. https://doi.org/10.1101/2019.12.20.884692

11.   Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, Reik W, Balasubramanian S (2012) Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science (New York, NY) 336:934–937

12.   Yu M, Hon GC, Szulwach KE, Song CX, Jin P, Ren B, He C (2012a) Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine. Nat Protoc 7:2159–2170

13.   Yu M, Hon GC, Szulwach KE, Song CX, Zhang L, Kim A, Li X, Dai Q, Shen Y, Park B et al (2012b) Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149:1368–1380

14.   Zeng H, He B, Xia B, Bai D, Lu X, Cai J, Chen L, Zhou A, Zhu C, Meng H et al (2018) Bisulfite-free, nanoscale analysis of 5-hydroxymethylcytosine at single base resolution. J Am Chem Soc 140:13190–13194

15.   Schutsky EK, DeNizio JE, Hu P, Liu MY, Nabel CS, Fabyanic EB, Hwang Y, Bushman FD, Wu H, Kohli RM (2018) Nondestructive, base-resolution sequencing of 5-hydroxymethylcytosine using a DNA deaminase. Nat Biotechnol. https://doi.org/10.1038/nbt.4204

16.   Song CX, Szulwach KE, Dai Q, Fu Y, Mao SQ, Lin L, Street C, Li Y, Poidevin M, Wu H et al (2013) Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 153:678–691

17.   Booth MJ, Marsico G, Bachman M, Beraldi D, Balasubramanian S (2014) Quantitative sequencing of 5-formylcytosine in DNA at single-base resolution. Nat Chem 6:435–440

18.   Guo F, Li X, Liang D, Li T, Zhu P, Guo H, Wu X, Wen L, Gu TP, Hu B et al (2014) Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell 15:447–459

19.   Xia B, Han D, Lu X, Sun Z, Zhou A, Yin Q, Zeng H, Liu M, Jiang X, Xie W et al (2015) Bisulfite-free, base-resolution analysis of 5-formylcytosine at the genome scale. Nat Methods 12:1047–1050

20.   Zhu C, Gao Y, Guo H, Xia B, Song J, Wu X, Zeng H, Kee K, Tang F, Yi C (2017) Single-Cell 5-formylcytosine landscapes of mammalian early embryos and ESCs at single-base resolution. Cell Stem Cell 20:720–731.e725

21.   Lu X, Song CX, Szulwach K, Wang Z, Weidenbacher P, Jin P, He C (2013) Chemical modification-assisted bisulfite sequencing (CAB-Seq) for 5-carboxylcytosine detection in DNA. J Am Chem Soc 135:9315–9317

22.   Song CX, Yin S, Ma L, Wheeler A, Chen Y, Zhang Y, Liu B, Xiong J, Zhang W, Hu J et al (2017) 5-Hydroxymethylcytosine signatures in cell-free DNA provide information about tumor types and stages. Cell Res 27:1231–1242

23.   Lentini A, Lagerwall C, Vikingsson S, Mjoseng HK, Douvlataniotis K, Vogt H, Green H, Meehan RR, Benson M, Nestor CE (2018) A reassessment of DNA-immunoprecipitation-based genomic profiling. Nat Methods 15:499–504

24.   Hao Z, Wu T, Cui X, Zhu P, Tan C, Dou X, Hsu KW, Lin YT, Peng PH, Zhang LS et al (2020) N(6)-deoxyadenosine methylation in mammalian mitochondrial DNA. Mol Cell 78(3):382–395.e8

25.   Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X et al (2014) A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 10:93–95

26.   Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS et al (2014) Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 24:177–189

27.   Yue Y, Liu J, Cui X, Cao J, Luo G, Zhang Z, Cheng T, Gao M, Shu X, Ma H et al (2018) VIRMA mediates preferential m(6)A mRNA methylation in 3』UTR and near stop codon and associates with alternative polyadenylation. Cell Discov 4:10

28.   Wen J, Lv R, Ma H, Shen H, He C, Wang J, Jiao F, Liu H, Yang P, Tan L et al (2018) Zc3h13 regulates nuclear RNA m(6)A methylation and mouse embryonic stem cell self-renewal. Mol Cell 69:1028–1038.e1026

29.   Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M, Jaffrey SR (2016) m(6)A RNA methylation promotes XISTmediated transcriptional repression. Nature 537:369–373 Pendleton KE, Chen B, Liu K, Hunter OV, Xie Y, Tu BP, Conrad

30.   Garcia-Campos MA, Edelheit S, Toth U, Safra M, Shachar R, Viukov S, Winkler R, Nir R, Lasman L, Brandis A et al (2019) Deciphering the 「m(6)A code」 via antibody-independent quantitative profiling. Cell 178:731–747.e716

31.   Zhang Z, Chen LQ, Zhao YL, Yang CG, Roundtree IA, Zhang Z, Ren J, Xie W, He C, Luo GZ (2019b) Single-base mapping of m(6)A by an antibody-independent method. Sci Adv 5:250 Zhao X, Yang Y, Sun BF, Shi Y, Yang X, Xiao W, Hao YJ,

32.   Shu X, Cao J, Cheng M, Xiang S, Gao M, Li T, Ying X, Wang F, Yue Y, Lu Z et al (2020) A metabolic labeling method detects m6A transcriptome-wide at single base resolution. Nat Chem Biol.

33.   Wang Y, Xiao Y, Dong S, Yu Q, Jia G (2020) Antibody-free enzymeassisted chemical approach for detection of N6-methyladenosine. Nat Chem Biol.https://doi.org/10.1038/s41589-020-0525-x

34.   Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N, Salmon-Divon M, Hershkovitz V, Peer E, Mor N, Manor YS et al (2015) Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science (New York, NY) 347:1002–1006

35.   Zhao X, Yang Y, Sun BF, Shi Y, Yang X, Xiao W, Hao YJ, Ping XL, Chen YS, Wang WJ et al (2014) FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res 24:1403–1419

36.   Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T (2015) N(6)- methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518:560–564

37.   Ke S, Pandya-Jones A, Saito Y, Fak JJ, Vagbo CB, Geula S, Hanna JH, Black DL, Darnell JE Jr, Darnell RB (2017) m(6)A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes Dev 31:990–1006

38.   Gokhale NS, McIntyre AB, McFadden MJ, Roder AE, Kennedy EM, Gandara JA, Hopcraft SE, Quicke KM, Vazquez C, Willer J et al (2016) N6-methyladenosine in flaviviridae viral RNA genomes regulates infection. Cell Host Microbe 20:654–665

39.   Courtney DG, Kennedy EM, Dumm RE, Bogerd HP, Tsai K, Heaton NS, Cullen BR (2017) Epitranscriptomic enhancement of influenza A virus gene expression and replication. Cell Host Microbe 22:377–386.e375

40.   Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV, Patil DP, Linder B, Pickering BF, Vasseur JJ, Chen Q et al (2017) Reversible methylation of m(6)Am in the 5′ cap controls mRNA stability. Nature 541:371–375

41.   Boulias K, Toczydlowska-Socha D, Hawley BR, Liberman N, Takashima K, Zaccara S, Guez T, Vasseur JJ, Debart F, Aravind L et al (2019) Identification of the m(6)Am methyltransferase PCIF1 reveals the location and functions of m(6)Am in the transcriptome. Mol Cell 75(3):631.e8–643.e8

42.   Sendinc E, Valle-Garcia D, Dhall A, Chen H, Henriques T, Navarrete- Perea J, Sheng W, Gygi SP, Adelman K, Shi Y (2019) PCIF1 catalyzes m6Am mRNA methylation to regulate gene expression. Mol Cell 75(3):620.e9–630.e9

43.   Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N, Ben-Haim MS, Dai Q, Di Segni A, Salmon-Divon M, Clark WC et al (2016) The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature 530:441–446

44.   Li X, Xiong X, Yi C (2016b) Epitranscriptome sequencing technologies: decoding RNA modifications. Nat Methods 14:23–31

45.   Safra M, Sas-Chen A, Nir R, Winkler R, Nachshon A, Bar-Yaacov D, Erlacher M, Rossmanith W, Stern-Ginossar N, Schwartz S (2017) The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature 551:251–255

46.   Schaefer M, Pollex T, Hanna K, Lyko F (2009) RNA cytosine methylation analysis by bisulfite sequencing. Nucleic Acids Res 37:e12

47.   Squires JE, Patel HR, Nousch M, Sibbritt T, Humphreys DT, Parker BJ, Suter CM, Preiss T (2012) Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 40:5023–5033

48.   Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515:143–146

49.   Li X, Zhu P, Ma S, Song J, Bai J, Sun F, Yi C (2015) Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol 11:592–597

50.   Zhang LS, Liu C, Ma H, Dai Q, Sun HL, Luo G, Zhang Z, Zhang L, Hu L, Dong X et al (2019a) Transcriptome-wide mapping of internal N(7)-methylguanosine methylome in mammalian mRNA. Mol Cell 4(6):1304.e8–1316.e8

51.   Malbec L, Zhang T, Chen YS, Zhang Y, Sun BF, Shi BY, Zhao YL, Yang Y, Yang YG (2019) Dynamic methylome of internal mRNA N (7)-methylguanosine and its regulatory role in translation. Cell Res.https://doi.org/10.1016/j.molp.2019.12.007

52.   Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, Korlach J, Turner SW (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7:461–465

53.   Venkatesan BM, Bashir R (2011) Nanopore sensors for nucleic acid analysis. Nat Nanotechnol 6:615–624

相關焦點

  • 【學術前沿】伊成器、宋春嘯等全面總結DNA和RNA修飾的檢測方法和...
    近日,北京大學的伊成器團隊和牛津大學的宋春嘯團隊合作在Protein & Cell發表特邀綜述「Mapping the epigenetic modifications of DNA and RNA」,該篇綜述詳細總結了目前高通量DNA/RNA修飾檢測技術的方法和發現,包括應用三代測序在單鹼基水平鑑定修飾位點,並討論了該領域存在的問題和今後研究的方向。
  • 【科技前沿】伊成器、宋春嘯等全面總結DNA和RNA修飾的檢測方法和...
    近日,北京大學的伊成器團隊和牛津大學的宋春嘯團隊合作在Protein & Cell發表特邀綜述「Mapping the epigenetic modifications of DNA and RNA」,該篇綜述詳細總結了目前高通量DNA/RNA修飾檢測技術的方法和發現,包括應用三代測序在單鹼基水平鑑定修飾位點,並討論了該領域存在的問題和今後研究的方向。
  • 伊成器、宋春嘯等全面總結DNA和RNA修飾的檢測方法和研究困境
    >詳細總結了目前高通量DNA/RNA修飾檢測技術的方法和發現,包括應用三代測序在單鹼基水平鑑定修飾位點,並討論了該領域存在的問題和今後研究的方向。(近日,BioArt總結了哺乳動物6mA的研究歷程和爭議,詳見:學術爭鳴 | 從迷霧重重到柳暗花明?
  • 【科技前沿】伊成器、宋春嘯等全面總結DNA和RNA修飾的檢測方法和研究困境
  • 伊成器等全面總結DNA和RNA修飾的檢測方法和研究困境
  • 伊成器:因興趣而執著,用科研回報祖國
    「身處北京大學,我們是幸運的,北大的開放、自由、包容的學術環境為我們的科研創造了非常優越的條件。我和我的團隊將在創新中發展,為國家創新驅動發展貢獻力量。」他叫伊成器,現任北京大學生命科學學院、北京大學化學與分子工程學院雙聘研究員。  作為一位科研工作者,他日復一日,兢兢業業投身科研領域,希望能為社會帶來不凡的成果和貢獻。
  • 學術爭鳴|從迷霧重重到柳暗花明?全面起底基因修飾研究的爭議
    還是由於實驗手段和方法的差異造成的?當6mA的豐度為0.0001%時,相當於每百萬個腺嘌呤核苷酸(A)僅有10個攜帶6mA修飾,這樣低的豐度,真的具有生物學功能嗎?是否是檢測時的汙染?關於真核生物是否真的具有6mA修飾,學界一直存有爭議。
  • ​【學術前沿】北大張傳茂團隊在核膜蛋白SUMO化修飾和功能研究...
    ​【學術前沿】北大張傳茂團隊在核膜蛋白SUMO化修飾和功能研究中取得新進展 2020-05-27 03:16 來源:澎湃新聞·澎湃號·政務
  • 【學術前沿】曲靜/慈維敏/張維綺/劉光慧合作揭示RNA m6A修飾調控...
    【學術前沿】曲靜/慈維敏/張維綺/劉光慧合作揭示RNA m6A修飾調控人幹細胞衰老的新機制 2020-10-10 16:53 來源:澎湃新聞·澎湃號·政務
  • 【學術前沿】突破!南方醫科大學夏來新/肖姍揭示RNA修飾調控組蛋白...
    【學術前沿】突破!該研究證明了甲基轉移酶METTL3 / METTL14調節H3K9me2修飾。該研究觀察到了H3K9me2去甲基酶KDM3B在m6A與佔有率之間的全基因組關聯,並且發現m6A閱讀器YTHDC1與m6A相關的染色質區域發生物理相互作用並募集KDM3B,從而促進H3K9me2去甲基化和基因表達。
  • 國自然熱點—m6A等熱門RNA修飾研究技術漫談
    以m6A RNA甲基化為代表的RNA修飾領域是當前最受矚目的前沿熱點之一,高分文章頻出,2020年剛過半,據統計m6A文章已經300+篇,國自然項目數呈快速增長的態勢。「工欲善其事必先利其器」,我們將以m6A RNA甲基化為主,全面介紹RNA修飾研究中的常見技術手段,從而幫助研究者找尋合適的工具,大幅提升研究效率和速度。
  • 綜述|全面總結哺乳動物植入前胚胎發育的表觀遺傳調控研究進展
    近日,同濟大學高紹榮教授團隊在Protein & Cell雜誌發表特邀綜述「Insights into epigenetic patterns in mammalian early embryos」,詳細總結了近年來利用微量組學的方法對哺乳動物早期胚胎發育過程中表觀遺傳重塑機制研究的最新進展
  • 生命科學學院伊成器課題組與合作者聯合繪製人體和小鼠m6A和m6Am...
    該研究系統地解析了人和小鼠組織中m6A和m6Am甲基化圖譜,為深入理解人體與小鼠的m6A和m6Am修飾的動態變化規律及調控機制提供了重要的生物數據資源。最近研究發現FTO可以去m6Am修飾;伊成器課題組及國際上多個研究小組幾乎同時獨立地發現帽子特異的甲基轉移酶PCIF1可以介導m6Am的形成,表明m6Am也是一個動態、可逆的修飾。
  • 細菌DNA提取方法的優化
    實驗首先研究超聲時間對大腸桿菌dna提取效果的影響,其次在傳統法、水煮法、es法(傳統法+溶菌酶)、esu法(傳統法+超聲+溶菌酶)之間進行比較,分析不同提取方法提取的兩種菌株dna的濃度及純度,找出了一種準確、高效的dna提取方法,為今後生物檢測鑑定工作提供了保障。
  • 學術時間 | 赭麴黴毒素A對HEK293細胞DNA和組蛋白甲基化修飾酶的...
    ●●●  編者按:河南農業大學學術氛圍濃鬱,其中作為「全國中文核心期刊」、「中國科技核心期刊」、「全國優秀科技期刊」、「中國期刊方陣雙效期刊」、「全國農林類核心期刊」以及連續5次入編北京大學圖書館《中文核心期刊要目總覽》的學術刊物,《河南農業大學學報》致力於傳播最新農業學術成果和信息,促進學術交流,推動農業科技進步和科技成果轉化。
  • 【學術前沿】鍾波組發現MAVS和MITA泛素化修飾的新機制
    MAVS(又叫做VISA)以及MITA(也叫STING)作為重要的接頭蛋白,分別介導胞漿中識別RNA的模式識別受體和識別DNA的模式識別受體所介導的信號轉導。研究表明,MAVS和MITA的活性與穩定性受到泛素化與去泛素化修飾的嚴格調控【2】。
  • 轉錄組研究新利器:ONT直接RNA測序,鹼基修飾、轉錄異構體一網打盡!
    在短讀長cDNA測序中有很大比例的讀長定位模糊,這種局限在正確識別和定量基因的多種異構體表達上尤為明顯。長讀長cDNA測序方法能夠產生跨越整個異構體的全長轉錄本序列,從而去除或大幅度減少模糊定位,並改進差異異構表達的分析結果。然而,以上方法依賴於cDNA的合成及PCR擴增,去除了天然RNA的鹼基修飾信息,並且只能粗略地估計多聚腺苷酸(poly(A))尾長。
  • 科學網—RNA修飾成學界熱點
    但在mRNA序列裡,至少有1/4 的核酸(A、C、G、U)是攜帶化學修飾物的(表觀遺傳學修飾),而現有的測序方法無法發現這些修飾物,科研人員也不知道這些修飾物會給RNA帶來何種改變。 近年來,學界掀起了一股研究RNA表觀遺傳學修飾的熱潮,很多課題組都將目光集中在 N6—甲基腺苷(m6A)這個核酸分子上,研究在全轉錄組水平上的這種化學修飾,以及該修飾與人體健康和疾病的關係。
  • 試驗對比了RNA測試與DNA-RNA測試診斷不確定甲狀腺結節的有效性
    兩種測試的敏感率分別為100.0%(95%CI,88.8%~100.0%)和96.9%(95%CI,83.8%~99.9%)。兩種測試的特異性分別為79.6%(95%CI,71.7%-86.1%)和84.8%(95%CI,77.0%-90.7%)(P=.33)。
  • 非編碼RNA研究園地 | 一種大環肽與腫瘤發生的自然通訊
    分別對CRC SW 480細胞和相應轉移的SW 620細胞進行核糖體結合RNA序列測定。本研究對已鑑定的INcRNAs進行了研究。在SW 480和SW 620細胞之間鑑定了384個差異表達的核糖體結合的≥1.2(補充數據)。