哺乳動物早期胚胎發育經歷了細胞命運的多次轉變,表觀遺傳信息在維持細胞命運和控制基因表達中發揮重要作用,解析表觀遺傳修飾在早期胚胎發育過程中的重塑與調控機制,對促進再生醫學以及生殖醫學的發展有重要意義。
近日,同濟大學高紹榮教授團隊在Protein & Cell雜誌發表特邀綜述「Insights into epigenetic patterns in mammalian early embryos」,詳細總結了近年來利用微量組學的方法對哺乳動物早期胚胎發育過程中表觀遺傳重塑機制研究的最新進展,比較了這些重編程事件在小鼠和人類之間的異同,並探討了表觀修飾如何調控體細胞核移植過程中細胞命運的轉變。
受精作用被認為是自然界最偉大的奇蹟之一,起始於高度特化的配子-精子與卵母細胞的結合,在這個過程中,細胞的表觀修飾經歷了大規模的重編程以獲得全能性,表觀修飾重編程的不完全是胚胎發育異常的重要原因。受到細胞量的限制,該領域的研究一直進展比較緩慢,近年來,得益於微量組學技術的發展,包括高紹榮課題組在內的多個研究團隊(哈佛大學張毅教授團隊、清華大學頡偉教授團隊、北京大學湯富酬教授團隊以及中科院基因組所劉江研究員團隊等)對哺乳動物早期胚胎發育過程中全基因組水平的表觀修飾變化進行了系統地分析,全面探討了包括DNA甲基化、組蛋白修飾、染色質可及性以及染色質三維結構等表觀修飾對細胞命運轉變的調控機制。這些研究為進一步研究早期胚胎發育的表觀遺傳調控機制提供了很好的基礎。
DNA甲基化
小鼠受精後發生大規模的不對稱的DNA去甲基化
在第一次卵裂發生前,除了印記控制區域(imprinting control regions, ICRs)和部分逆轉座子(retrotransposons)之外,母源和父源基因組會經歷廣泛的主動和被動的DNA去甲基化【1-5】。父源基因組的DNA去甲基化發生得更劇烈更主動【6-8】。相比之下,母源基因組對這種初始的DNA去甲基化更具抵抗力,其在卵裂過程中更傾向於被動去甲基化,從而在早期胚胎中產生了表觀遺傳修飾的不對稱性【9-11】。
DNA甲基化的異常重編程可能導致發育缺陷和胚胎阻滯。體細胞核移植(SCNT)胚胎中異常高的DNA甲基化水平就是導致其發育率遠低於正常受精胚胎的表觀遺傳障礙之一【12-15】。通過比較克隆胚胎與正常受精胚胎的DNA甲基化組,我們課題組發現克隆胚胎中存在著再甲基化區域(re-methylated DMRs , rDMRs),並且富含了與全能性和發育相關的基因【16】,表明配子或供體細胞的DNA甲基化水平的記憶和重塑對子代早期胚胎發育有重要作用。
人與小鼠的植入前胚胎的DNA甲基化重編程模式大體相似,但細節不同
人類胚胎中最初的快速DNA去甲基化發生在受精卵到2細胞階段,並保持穩定直至桑椹胚期,隨後是從桑椹胚到囊胚階段的第二次DNA去甲基化【17】。人胚胎整體的DNA甲基化模式呈現出廣泛的大幅去甲基化和有針對性的密集從頭甲基化(主要發生在8細胞階段)之間的動態平衡。與小鼠相似的是,人類父源基因組經歷的去甲基化的速度要比母源基因組更快【18-21】。值得注意的是,與常用的哺乳動物模型相比,人類胚胎的遺傳背景更為複雜,這可能會影響分析結果的準確性。
組蛋白修飾
H3K4me3
2016年,通過利用低起始量的ChIP-seq技術,我們課題組以及頡偉、任兵三個團隊同時發表論文,首次描繪出了小鼠胚胎在ZGA階段和第一次細胞命運決定時的多種組蛋白修飾在全基因組的分布情況【22-24】。(見圖1)受精後,父源基因組中的H3K4me3(活躍啟動子的標記)被迅速去除,但在主要ZGA(major ZGA)階段被重新建立。相比之下,母源基因組的H3K4me3呈現非經典的形式(noncanonical H3K4me3, ncH3K4me3)【22】【24】。過表達Kdm5b會導致成熟卵母細胞的轉錄組重新激活,表明ncH3K4me3可能與卵母細胞中全基因組的沉默狀態有關【24】,但是在人的GV期和MI期卵母細胞中並不存在大量的ncH3K4me3,表明人類卵母細胞的基因組沉默機制與小鼠中受ncH3K4me3調控的機制是不同的【25】。有趣的是,H3K4me3峰的寬度在小鼠著床前胚胎發育過程中是高度動態變化的,並且與基因表達水平呈正相關【23】。
圖1 小鼠早期胚胎發育組蛋白修飾和染色質可及性的表觀基因組重編程。
H3K27me3
在小鼠早期胚胎發育期間,父源和母源等位基因的啟動子區域中的H3K27me3早在PN5時期的受精卵中就經歷了廣泛的去除,隨後在從桑椹胚到囊胚階段出現修飾的動態變化【23】【26-28】(見圖1)。在人類植入前胚胎發育過程中,H3K27me3的重編程與小鼠不同。ZGA(8細胞期)階段的人類胚胎幾乎觀察不到H3K27me3的信號,表明在兩個親本基因組上H3K27me3整體的擦除【29】(見圖2),這可能與人類早期胚胎中缺失PRC2有關【30】。
圖2 人類植入前胚胎發育過程中動態組蛋白修飾和染色質可及性。
二價修飾(Bivalent)
小鼠植入前胚胎中的兩種修飾共存的基因數量要比胚胎幹細胞(embryonic stem cells, ESCs)中少很多 【23】。在胚胎發育過程中,二價修飾直到譜系分化開始時的囊胚階段才開始建立。有趣的是,在胚胎第6.5天(Embryonic day 6.5, E6.5)的外胚層(epiblast),在發育相關基因的啟動子區域發現了較強的二價修飾,即「超級二價(Super bivalent)」,並表現出獨特的染色質高級結構【31】。
H3K9me3
在小鼠早期胚胎發育過程中,H3K9me3被發現主要富集在LTR區域。我們最近的研究表明,小鼠胚胎中,H3K9me3會在DNA甲基化去除之後富集到LTR區域上,起到抑制LTR表達的作用【32】。異常的H3K9me3重編程被認為會直接導致ZGA的失敗【33】【34】。我們在克隆胚胎中過表達Kdm4b(H3K9去甲基化酶)能夠挽救受H3K9me3影響表達的ZGA相關基因的轉錄,並顯著提高克隆胚胎的發育率【35】。另外我們還發現,供體細胞中的H3K9me3還會阻礙克隆胚胎發育過程中拓撲相關結構域(topologically associated domains, TADs)的去除,說明H3K9me3是細胞命運轉變的重要障礙。
轉座子
胚胎發育早期會有大量轉座子元件被激活,例如,MERVL在類2細胞(2-cell like)的ESCs和分裂期的胚胎中表達,可以驅動很多ZGA特異和全能性特異的轉錄本的表達【36-39】。長分散元件(long interspersed element, LINE1)在小鼠植入前胚胎發育過程中高表達【40】,受精之後便開始活躍轉錄並在2細胞階段達到最高值,其在基因調控網絡中起著至關重要的作用【41】。我們最近的研究發現小鼠卵母細胞和早期胚胎中ZCCHC8的缺失會導致持續豐富的LINE1 RNA以及較高的染色質可及性【42】。
染色質可及性
胚胎發育過程中,染色質可及性也經歷了劇烈的重編程。與受精後父母源基因組中DNA甲基化和組蛋白修飾的不對稱重編程方式不同的是,除了少數等位基因特異性開放染色質和轉錄的情況外,父母源染色質可及性似乎更加同步【39】【43】值得注意的是,開放染色質存在於2細胞階段活躍轉錄基因的啟動子和轉錄末端位點附近,這與其他小鼠組織和細胞類型中順式調控序列的模式不同【44】。在人類胚胎發育過程中,在ZGA發生之前的2細胞階段就能觀察到廣泛分布的染色質可及區域【45】【46】,人早期胚胎最顯著的染色體重塑發生在4細胞和8細胞階段之間(見圖1)。
3D染色質
小鼠MII卵母細胞由於其有絲分裂性質而缺乏TAD和區室結構,但是存在由H3K27me3標記的多梳相關域(PAD)【47】。相比之下,精子既存在TAD,又存在A/B區室【48】。受精後,父母源的染色質高級結構在合子和ZGA階段均不明顯,但在空間上彼此分離並顯示出明顯的區室化。這種等位的分離和區室化會一直保持到8細胞階段,並與H3K27me3的富集相吻合【48-50】。與小鼠精子不同的是,人類精子缺乏TAD和CTCF的表達【51】(見圖3)。在人類胚胎發生過程中,TAD和A/B區室也是逐漸建立的。
圖3 小鼠和人類配子和植入前胚胎中的高級染色質組織。
近日,我們課題組在克隆早期胚胎發育過程中均觀察到異常的TAD和A/B區室結構【52】。Kdm4b的過表達部分改善了染色質的3D結構異常,表明供體細胞中的H3K9me3修飾是染色質結構重編程的障礙,體現了染色質3D結構的形成和組蛋白修飾之間的相關性。
展望
近年來,由於微量表觀基因組的研究,我們對植入前發育的表觀遺傳重編程機制的理解有了很大提高。然而,如何在不同的基因組位點上調節重編程仍然未知。在位點特異性的表觀遺傳修飾轉變中,轉錄因子的識別發揮重要作用。進一步的機制研究需要進行多組學分析以闡明全能性獲得和細胞命運決定的基本原理,這將增進我們對細胞命運轉變和哺乳動物早期發育的了解。
相關閱讀:
『珍藏版』綜述丨伊成器、宋春嘯等全面總結DNA和RNA修飾的檢測方法和研究困境
原文連結:
文連結:
https://link.springer.com/content/pdf/10.1007/s13238-020-00757-z.pdf
參考文獻
1. Guo, F., Li, L., Li, J., Wu, X., Hu, B., Zhu, P., Wen, L., and Tang, F. (2017). Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells. Cell Res 27, 967-988.
2. Messerschmidt, D.M., Knowles, B.B., and Solter, D. (2014). DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev 28, 812-828.
3. SanMiguel, J.M., and Bartolomei, M.S. (2018). DNA methylation dynamics of genomic imprinting in mouse development. Biol Reprod 99, 252-262.
4. Shen, L., Inoue, A., He, J., Liu, Y., Lu, F., and Zhang, Y. (2014). Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes. Cell Stem Cell 15, 459-471.
5. Smith, Z.D., Chan, M.M., Mikkelsen, T.S., Gu, H., Gnirke, A., Regev, A., and Meissner, A. (2012). A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484, 339-344.
6. Inoue, A., and Zhang, Y. (2014). Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes. Nat Struct Mol Biol 21, 609-616.
7. Loppin, B., Bonnefoy, E., Anselme, C., Laurencon, A., Karr, T.L., and Couble, P. (2005). The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus. Nature 437, 1386-1390.
8. Skene, P.J., and Henikoff, S. (2013). Histone variants in pluripotency and disease. Development 140, 2513-2524.
9. Guo, F., Li, L., Li, J., Wu, X., Hu, B., Zhu, P., Wen, L., and Tang, F. (2017). Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells. Cell Res 27, 967-988.
10. Stewart, K.R., Veselovska, L., and Kelsey, G. (2016). Establishment and functions of DNA methylation in the germline. Epigenomics 8, 1399-1413.
11. Xu, Q., and Xie, W. (2018). Epigenome in Early Mammalian Development: Inheritance, Reprogramming and Establishment. Trends Cell Biol 28, 237-253.
12. Dean, W., Santos, F., Stojkovic, M., Zakhartchenko, V., Walter, J., Wolf, E., and Reik, W. (2001). Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci U S A 98, 13734-13738.
13. Peat, J.R., and Reik, W. (2012). Incomplete methylation reprogramming in SCNT embryos. Nat Genet 44, 965-966.
14. Teperek, M., and Miyamoto, K. (2013). Nuclear reprogramming of sperm and somatic nuclei in eggs and oocytes. Reprod Med Biol 12, 133-149.
15. Yang, X., Smith, S.L., Tian, X.C., Lewin, H.A., Renard, J.P., and Wakayama, T. (2007). Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat Genet 39, 295-302.
16. Gao, R., Wang, C., Gao, Y., Xiu, W., Chen, J., Kou, X., Zhao, Y., Liao, Y., Bai, D., Qiao, Z., et al. (2018b). Inhibition of Aberrant DNA Re-methylation Improves Post-implantation Development of Somatic Cell Nuclear Transfer Embryos. Cell Stem Cell 23, 426-435 e425.
17. Guo, H., Zhu, P., Yan, L., Li, R., Hu, B., Lian, Y., Yan, J., Ren, X., Lin, S., Li, J., et al. (2014b). The DNA methylation landscape of human early embryos. Nature 511, 606-610.
18. Fulka, H., Mrazek, M., Tepla, O., and Fulka, J., Jr. (2004). DNA methylation pattern in human zygotes and developing embryos. Reproduction 128, 703-708.
19. Okae, H., Chiba, H., Hiura, H., Hamada, H., Sato, A., Utsunomiya, T., Kikuchi, H., Yoshida, H., Tanaka, A., Suyama, M., et al. (2014a). Genome-wide analysis of DNA methylation dynamics during early human development. PLoS Genet 10, e1004868.
20. Smith, Z.D., Chan, M.M., Humm, K.C., Karnik, R., Mekhoubad, S., Regev, A., Eggan, K., and Meissner, A. (2014). DNA methylation dynamics of the human preimplantation embryo. Nature 511, 611-615.
21. Zhu, P., Guo, H., Ren, Y., Hou, Y., Dong, J., Li, R., Lian, Y., Fan, X., Hu, B., Gao, Y., et al. (2018). Single-cell DNA methylome sequencing of human preimplantation embryos. Nat Genet 50, 12-19.
22. Dahl, J.A., Jung, I., Aanes, H., Greggains, G.D., Manaf, A., Lerdrup, M., Li, G., Kuan, S., Li, B., Lee, A.Y., et al. (2016). Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition.Nature 537, 548-552.
23. Liu, X., Wang, C., Liu, W., Li, J., Li, C., Kou, X., Chen, J., Zhao, Y., Gao, H., Wang, H., et al. (2016b). Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos.Nature 537, 558-562.
24. Zhang, B., Zheng, H., Huang, B., Li, W., Xiang, Y., Peng, X., Ming, J., Wu, X., Zhang, Y., Xu, Q., et al. (2016). Allelic reprogramming of the histone modification H3K4me3 in early mammalian development.Nature 537, 553-557.
25. Xia, W., Xu, J., Yu, G., Yao, G., Xu, K., Ma, X., Zhang, N., Liu, B., Li, T., Lin, Z., et al. (2019). Resetting histone modifications during human parental-to-zygotic transition. Science 365, 353-360.
26. Inoue, A., Jiang, L., Lu, F., Suzuki, T., and Zhang, Y. (2017a). Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature 547, 419-424.
27. Santos, F., Peters, A.H., Otte, A.P., Reik, W., and Dean, W. (2005). Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev Biol 280, 225-236.
28. Zheng, H., Huang, B., Zhang, B., Xiang, Y., Du, Z., Xu, Q., Li, Y., Wang, Q., Ma, J., Peng, X., et al. (2016). Resetting Epigenetic Memory by Reprogramming of Histone Modifications in Mammals. Mol Cell 63, 1066-1079.
29. Xia, W., Xu, J., Yu, G., Yao, G., Xu, K., Ma, X., Zhang, N., Liu, B., Li, T., Lin, Z., et al. (2019). Resetting histone modifications during human parental-to-zygotic transition. Science 365, 353-360.
30. Saha, B., Home, P., Ray, S., Larson, M., Paul, A., Rajendran, G., Behr, B., and Paul, S. (2013). EED and KDM6B Coordinate the First Mammalian Cell Lineage Commitment To Ensure Embryo Implantation. Mol Cell Biol 33, 2691-2705.
31. Xiang, Y., Zhang, Y., Xu, Q., Zhou, C., Liu, B., Du, Z., Zhang, K., Zhang, B., Wang, X., Gayen, S., et al. (2020). Epigenomic analysis of gastrulation identifies a unique chromatin state for primed pluripotency. Nat Genet 52, 95-105.
32. Wang, C., Liu, X., Gao, Y., Yang, L., Li, C., Liu, W., Chen, C., Kou, X., Zhao, Y., Chen, J., et al. (2018a). Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development. Nat Cell Biol 20, 620-631.
33. Matoba, S., Liu, Y., Lu, F., Iwabuchi, K.A., Shen, L., Inoue, A., and Zhang, Y. (2014). Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell 159, 884-895.
34. Schultz, R.M. (2002). The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum Reprod Update 8, 323-331.
35. Liu, W., Liu, X., Wang, C., Gao, Y., Gao, R., Kou, X., Zhao, Y., Li, J., Wu, Y., Xiu, W., et al. (2016a). Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing. Cell Discov 2, 16010.
36. Kigami, D., Minami, N., Takayama, H., and Imai, H. (2003). MuERV-L is one of the earliest transcribed genes in mouse one-cell embryos. Biol Reprod 68, 651-654.
37. Macfarlan, T.S., Gifford, W.D., Driscoll, S., Lettieri, K., Rowe, H.M., Bonanomi, D., Firth, A., Singer, O., Trono, D., and Pfaff, S.L. (2012). Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487, 57-63.
38. Svoboda, P., Stein, P., Anger, M., Bernstein, E., Hannon, G.J., and Schultz, R.M. (2004). RNAi and expression of retrotransposons MuERV-L and IAP in preimplantation mouse embryos. Dev Biol 269, 276-285.
39. Wu, J., Huang, B., Chen, H., Yin, Q., Liu, Y., Xiang, Y., Zhang, B., Liu, B., Wang, Q., Xia, W., et al. (2016). The landscape of accessible chromatin in mammalian preimplantation embryos. Nature 534, 652-657.
40. Fadloun, A., Le Gras, S., Jost, B., Ziegler-Birling, C., Takahashi, H., Gorab, E., Carninci, P., and Torres-Padilla, M.E. (2013). Chromatin signatures and retrotransposon profiling in mouse embryos reveal regulation of LINE-1 by RNA. Nat Struct Mol Biol 20, 332-338.
41. Bourque, G. (2009). Transposable elements in gene regulation and in the evolution of vertebrate genomes. Curr Opin Genet Dev 19, 607-612.
42. Wu, Y., Liu, W., Chen, J., Liu, S., Wang, M., Yang, L., Chen, C., Qi, M., Xu, Y., Qiao, Z., et al. (2019). Nuclear Exosome Targeting Complex Core Factor Zcchc8 Regulates the Degradation of LINE1 RNA in Early Embryos and Embryonic Stem Cells. Cell Rep 29, 2461-2472 e2466.
43. Tsompana, M., and Buck, M.J. (2014). Chromatin accessibility: a window into the genome. Epigenetics Chromatin 7, 33.
44. Shen, Y., Yue, F., McCleary, D.F., Ye, Z., Edsall, L., Kuan, S., Wagner, U., Dixon, J., Lee, L., Lobanenkov, V.V., et al. (2012). A map of the cis-regulatory sequences in the mouse genome. Nature 488, 116-120.
45. Lee, M.T., Bonneau, A.R., and Giraldez, A.J. (2014). Zygotic genome activation during the maternal-to-zygotic transition. Annu Rev Cell Dev Biol 30, 581-613.
46. Wu, J., Xu, J., Liu, B., Yao, G., Wang, P., Lin, Z., Huang, B., Wang, X., Li, T., Shi, S., et al. (2018). Chromatin analysis in human early development reveals epigenetic transition during ZGA. Nature 557, 256-260.
47. Li, L., Guo, F., Gao, Y., Ren, Y., Yuan, P., Yan, L., Li, R., Lian, Y., Li, J., Hu, B., et al. (2018a). Single-cell multi-omics sequencing of human early embryos. Nat Cell Biol 20, 847-858.
48. Du, Z., Zheng, H., Huang, B., Ma, R., Wu, J., Zhang, X., He, J., Xiang, Y., Wang, Q., Li, Y., et al. (2017). Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature 547, 232-235.
49. Borsos, M., Perricone, S.M., Schauer, T., Pontabry, J., de Luca, K.L., de Vries, S.S., Ruiz-Morales, E.R., Torres-Padilla, M.E., and Kind, J. (2019). Genome-lamina interactions are established de novo in the early mouse embryo. Nature 569, 729-733.
50. Collombet, S., Ranisavljevic, N., Nagano, T., Varnai, C., Shisode, T., Leung, W., Piolot, T., Galupa, R., Borensztein, M., Servant, N., et al. (2020). Parental-to-embryo switch of chromosome organization in early embryogenesis. Nature 580, 142-146.
51. Chen, X., Ke, Y., Wu, K., Zhao, H., Sun, Y., Gao, L., Liu, Z., Zhang, J., Tao, W., Hou, Z., et al. (2019a). Key role for CTCF in establishing chromatin structure in human embryos. Nature 576, 306-310.
52. Chen, M., Zhu, Q., Li, C., Kou, X., Zhao, Y., Li, Y., Xu, R., Yang, L., Yang, L., Gu, L., et al. (2020). Chromatin architecture reorganization in murine somatic cell nuclear transfer embryos. Nat Commun 11, 1813.
歡迎關注精準醫學微信公眾號,獲取更多精彩內容。方法1:微信查找(精準醫學)。方法2:加微信公眾號(precismed)。