2020年7月9日,2020世界人工智慧大會即將在上海拉開帷幕。
當前,AI已走出技術爆發的階段,進入落地應用、創造價值的新時期,AI賦能傳統行業的重要性日益凸顯。此次大會中,AI+工業、AI+健康、AI+教育、AI+金融等主題論壇將依次召開,討論AI賦能的現狀、難點和未來前景,推動智能時代的傳統行業轉型。
縱觀全球,我國的AI發展處於怎樣的國際地位?未來的路又在何方?
同濟大學副校長、上海市人工智慧戰略諮詢專家委員會召集人蔣昌俊表示,在國家政策引領和支持下,得益於大規模的用戶基礎、豐富的應用場景,中國人工智慧領域不斷擁有全球影響力,尤其是智能產業化應用已經走在世界前端。
現狀:中國智能產業化應用有世界領先,基礎研究仍是短板
「目前,我國在智能交通、網際網路金融、智慧醫療等領域已經取得了初步的應用成果。國內網際網路企業也紛紛規劃人工智慧藍圖,比如百度的自動駕駛,阿里的城市大腦智能交通,騰訊的醫療讀片和醫療影像資料處理,科大訊飛的語音識別;寒武紀、科大訊飛、商湯科技為代表的初創企業在技術上不斷創新;海康威視佔據全球智能安防企業的第一名。這些都是我國在AI產業中取得的實際成就。」蔣昌俊介紹。
但同時指出,當前我國人工智慧產業尚未形成有影響力的生態圈和產業鏈,與美國、歐洲相比,更加集中於應用落地,在基礎理論和原創算法發展薄弱,缺乏突破性、標誌性的研究成果,在共性技術平臺、智能晶片等方面發展相對薄弱。
蔣昌俊認為,這一系列的「短板」導致了我國依賴國外開發平臺、基礎器件等問題的產生,顯然不利於我國人工智慧生態的布局和產業的長期發展。「因此,我們還需要進一步提高認知,著眼於未來,加大科研攻關力度,補齊技術短板,建立產業生態,搶佔產業制高點。」
在談到人工智慧基礎研究時,蔣昌俊說:「目前,從我國人工智慧領域發展角度來講,我們很注重應用方面,但是基礎研究依然是短板,人工智慧領域重大的理論和技術大都是源自西方國家。基礎科學研究的特點是需要大量資源、投入周期長、不確定性大和風險高等,決定了其難以在短期內獲得見效,但是只有長期的投入和耐心才能實現真正持久的創新與源源不斷的技術發展。」
從中長期來看,人工智慧和機器學習領域的發展根源於理論、算法和晶片等基礎層研究的突破創新,亟需針對人工智慧的基礎性、前瞻性、源頭性的問題研究上有所突破,需要學術界和產業界共同努力,從源頭找到有價值的問題、基礎支撐平臺技術的創新、搭建良好的產業生態鏈條等。
在他看來,令人欣慰的是,目前各大網際網路頭部企業已經意識到,通過開源技術建立產業生態,才是搶佔產業制高點的重要手段。
儘管目前美國仍是該領域發展水平最高的國家,但我國的科技企業也在居安思危,開始深度學習框架上的布局。諸如百度的飛漿(PaddlePaddle)、 清華大學的計圖(Jittor)、曠視的天元(MegEngine)和華為推出的MindSpore等,都相繼開源其深度學習算法,通過自主研發來掌握AI底層技術。
未來:AI發展之路依舊漫長 現在始於足下
AI的未來在何方?它將如何發展,又將給我們帶來怎樣的改變?
蔣昌俊表示,要想探討AI的未來,就要從其發展特點入手,通過探討傳統AI和當前AI,進而認知未來AI。
他認為,傳統的AI注重從感知到認知的過程,實現從邏輯到計算的不斷提升;而當前的AI,則是由弱到強的智能,是從閉環到開環、從確定到非定的系統。
「目前的神經網絡模型大都側重對數據的計算層面。事實上,一個高級的智能機器應該具有環境感知與邏輯推理的能力。如何將AI的演算和計算進行融合,結合基於規則系統的推理能力和神經網絡的學習能力,構建一個更強大的AI模型,推理能力可以幫助減少神經網絡學習新事物時所需的數據量。這樣的交互和融合將是當前AI由弱到強的主要突破口。」蔣昌俊認為,在構建類腦認知模型中,目前脈衝神經網絡的神經元以電脈衝的形式對信息進行編碼,更接近真實神經元對信息的編碼方式,能夠很好地編碼時間信息。
由於脈衝訓練缺乏高效的學習方法而且需要耗費大量算力,在性能上與深度網絡等模型還存在一定差距。未來,兩類模型仍需要不斷從腦科學中吸取營養並不斷融合,發展性能更好、效能更高的新一代神經網絡模型。
基於這樣的分析,蔣昌俊認為,未來的AI將是從理性到感性,從有限到無限,從專門到綜合。但他也同時強調:「AI發展之路還很漫長,我們現在只是始於足下,深入探索傳統AI,並為向當前AI和未來AI邁進奠定基礎。」
破局:一步一個腳印,為AI打造人才資源池
作為國家「雙一流」建設高校,同濟大學也敏銳地意識到了人才培養對人工智慧發展的重要性。
「目前同濟大學在多個學科包括計算機、自動化、交通、汽車、建築、機械、土木等均開展了人工智慧技術的研究和科研人才培養,側重於建立人才培養體系,為人工智慧打造人才資源池,尤其是在基礎學科領域突破人才瓶頸。」蔣昌俊介紹。
2017年,成立人工智慧研究院;2018年,智能建造、智能製造工程、數據科學與大數據技術等多個與人工智慧相關的本科專業;同年,依託同濟大學建設的上海自主智能無人系統科學中心宣告成立;2019年,同濟大學獲批教育部首批「人工智慧」本科專業建設資格,並招收了第一批本科生......
近年來,同濟大學在人工智慧領域人才培育方向「一步一個腳印」地穩步前進。
據介紹,在校企合作方面,同濟大學還將通過不斷加深學校與企業的融合,藉助企業創新技術和應用,在幫助學校提升教育資源利用率和教學質量的同時,也為師生提供更多更新的實際案例。
「人工智慧領域需要培養以應用型為導向的人才,以解決實際問題為核心,這就需要與科技創新和產業發展深度融合。同時,企業對行業的需求相對高校來說更為敏銳,因此可以幫助高校發現AI產業發展的實際需要,將教育方向與具體崗位相結合,並使用企業技術與實踐相結合培養出符合人工智慧產業需要的專業型人才。」蔣昌俊說。(鄔迪)
(責編:鄔迪、韓慶)