高考數列通項公式解題方法(6):階差法、特徵方程法

2021-01-14 紅魚學長




在高考數學中,數列是經常考察的一種題型。現在就讓我們看看,針對求數列通項的題型,有哪些便捷的解答方法。

今天分享的數列通項公式解法有:階差法、特徵方程法。



2、對無窮遞推數列

 

針對無窮遞推數列來說,可以採用階差法(逐項相減法或兩式相減法)來求解相應的通項公式。利用兩式相減法有兩點好處:


(1)可以把相同項給減掉,特別是常數項。


(2)兩式相減以後,很多時候可以進行因式分解,進而對相減的式子進行整理化簡。同時,當有平方項的時候,還可以利用平方差公式。因此,針對一些數列公式的求解方法,可以試試兩式相減法來進行求解。



我們知道,數列在本質上就屬於函數的一種類型,和函數很類似。那麼在求解相應數列通項公式的時候,就可以用函數的特徵方程來進行求解。在高中結算,利用特徵方程來求解數列通項公式的類型一般有三種形式。





3、當遇到數列的遞推形式是分數的時候,這個時候,用特徵方程也可以求解相應的數列通項公式。


以上是階差法、特徵方程法數列通項公式,其他的通項公式解法,請看後續的文章即可。





若你喜歡這篇文章

給我們點個「在看」吧


相關焦點

  • 高考數列通項公式很難學?試試這11種方法,幫你一招制敵
    01總述:一、利用遞推關係式求數列通項的11種方法1、累加法2、累乘法3、待定係數法4、階差法(逐差法)5、迭代法、6、對數變換法、7、倒數變換法、8、換元法(目的是去遞推關係式中出現的根號)9、數學歸納法10、不動點法(遞推式是一個數列通項的分式表達式)11、特徵根法二、四種基本數列:等差數列、等比數列、等和數列、等積數列及其廣義形式。
  • 衝刺雙一流,高考數學滿分模板--數列通項求法總結:著重講解秒殺絕招--特徵方程法、構造法
    衝刺雙一流,高考數學滿分模板--數列通項求法總結:著重講解秒殺絕招--特徵方程法、構造法。      數列通項常用求法:觀察法、公式法、累加法、累乘法、迭代法、構造法、數學歸納法、特徵方程法。
  • 每年高考必考!求數列通項公式的11種方法——高三同學必須掌握
    同學們都知道,求數列通項公式基本上是每年高考必考題。所以,求通項公式的各種方法 和技巧每位同學都應該徹底掌握。利用遞推關係求數列通項一般有11種方法,有累加法、累乘法、等差法、換元法。相信同學們都再熟悉不過了。
  • 2019高考衝刺:等比數列解題技巧—實戰篇(一)
    2019高考衝刺:等比數列解題技巧—實戰篇(一)(更多資料和更詳細的例題解答和解題技巧,請關注+評論!如果對大家有幫助,可以轉發幫助更多學子!!!)在很多題目中並沒有明確告訴這就是等比數列,但是如果我們能快速判斷出來這就是等比數列,然後運用等比數列的性質解題會簡化很多解題步驟,並且會降低計算量,提高解題正確率。等比數列常用的判斷方法有以下四種:
  • 只需兩招,輕鬆搞定高中數學a(n+1)=p·an+c型數列通項公式
    在前面的文章已講過用累加法求解a(n+1)=an+f(n)型和用累乘法求解a(n+1)=g(n)·an型數列的通項公式的方法,這兩種求解都可以看成a(n+1)=p·an+f(n)型數列的特殊情況,本文分享另外一種特殊形式a(n+1)=p·an+c(p、c均為常數)通項公式的求解。
  • 高考數學:數列的通項公式和求和題的命題規律和解題技巧!
    數列的通項與求和是歷年高考命題的重點與熱點,試題較為綜合,主要有以下命題角度:(1)數列的前n項和Sn與項an之間的關係的應用;(2)簡單的等差數列、等比數列求和問題;(3)綜合性的數列求和,主要涉及裂項相消法、錯位相減法、分組求和法的應用;(4)數列的綜合問題,與函數、不等式、三角以及數學文化等知識相結合,綜合考查考生對數列知識的掌握程度與應用能力
  • 學霸整理——求數列的通項公式解法集錦,轉化、歸納一文全懂
    數列問題是高中階段的一個重要內容板塊,是高考必考的一個內容,主要圍繞定義、遞推公式、通項公式、前n項公式和及相關性質等方面的問題來研究,而這些研究又都是從最簡單的等差、等比數列作為切入點來展開的,其中,求數列的通項公式及前n項和公式是一個重點,欲求通項公式,必須以遞推公式為依據,欲求前
  • 吳國平:圈起來,這個一般會考到,怎麼求數列遞推問題以及通項公式
    關於高考數學相關的數列類問題,我們已經陸續講解了數列求和問題、數列類實際應用型問題、數列綜合運用問題等等。各個專題針對高考數列不同的考查方向和出題方式,如果大家對每個專題都能認真去研讀和思考,相信一定能幫助大家掌握好數列相關知識內容。在講解幾個數列專題知識內容過程中,我們發現要順利解決數列問題,很多時候需要先找出數列的通項公式,或是遞推公式等等。
  • 高考六大題型|數列解答題詳細解題模板,快收藏起來留著備用吧
    引言:高考解答題共有六道,其中第17題考查的是三角函數或是數列交替出現。下面主要探討下數列解答題主要考查內容,通過幾道例題展示解題步驟,最後歸納出解決此類題型的解題模板。一:高考對數列解答題的考查主要是兩塊內容:1、求數列的通項公式,是高考的熱點問題之一,幾乎每年必考.主要是利用一個數列的遞推關係求數列的通項公式,即給出與一個數列相關的項或相關的若干項的和的一個關係式,求出該數列的通項公式。
  • 高一到高三數學熱點難點吃透大全:數列通項公式必備的方法和技巧
    求數列通項公式是歷年高考數學的重點難點!大綱對這些要求如下1.了解數列的概念(定義、數列的項、通項公式、前n項和)2.了解數列三種簡單的表示方法(列表法、圖象法、通項公式法);3.了解數列是自變量為正整數的一類特殊函數,了解數列的分類(按項數分、按項間的大小等).
  • 遞推式求數列通項公式你會嗎?
    一、前言之前已經學了等差數列,等比數列的概念以及通項公式,但是這只是針對於簡單的求通項公式。(如果讀者沒有看過作者發布的文章,可以往前翻看一下)二、遞推式是什麼?既然要學習使用遞推式求通解公式,那就必須要明白什麼是遞推式啊?遞推式從字面上看就是遞推,也就是從前一項推出後一項,也就是如下:這就是前一項通過公式推出後一項,這就是遞推式求解每一項的值。三、遞推式如何求解?
  • 競賽(或高考):用待定係數法求數列的通項公式和前n項和
    昨天我們談了數列問題中可以代替錯位相減法的兩種方法,其中我們談到待定係數法在數列問題中應用廣泛,今天我們深入的介紹幾種可以用待定係數法處理的數列特徵首先介紹幾個有關數列的概念顯然我們對這個概念並不陌生,初中時一些找規律的問題中,經常用相鄰兩項做減法,有時還要在所得數列的基礎上進一步做減法
  • 吳國平:高考數學必考難點-數列求和的幾種方法
    數列問題一直是高考數學的重難點,深受出卷老師的青睞,可以說是每年高考數學必考的考點之一。雖然大家都知道高考數學數列的重要性,但很多同學對於這類問題,一直無從下手。數列問題考查範圍比較廣泛,如數列的概念與簡單表示法、數列的綜合應用、數列求和等等,今天我們就來講數列求和的解題技巧。
  • 精選:高中數學數列經典試題+解題方法大全,從不懂到穩拿分!
    你是否能熟練解決與數列有關的綜合性問題?如果不能,那就繼續往下看,我給同學們整理了高中數學數列部分的經典試題及解題方法,對於數列這塊薄如的同學們有救啦,把這份資料吃透,數列想扣分也難!了解了公式定理之後,就是解題方法了,下面給大家介紹幾種求數列的解題方法:首先是求通項公式的三種解題方法:1、求差、商法2、疊乘法3、遞推公式法其次是求數列前n項和的幾種常用方法如下:1、裂項法:把數列各項拆成兩項或多項之和,使之出現成對互為相反數的項。
  • 數列的通項公式求法總結
    方法一:歸納,猜想數列的通項公式這種方法適用於數列規律性比較強,能明顯看出一般性規律的數列,並不常用。方法二:公式法利用等差或等比數列的通項公式這種適用於已知是等差或等比數列,或能證出是等差或等比數列,直接用公式法求數列。
  • 等比數列解題技巧—實戰篇
    等比數列解題技巧—實戰篇二(更多資料和更詳細的例題解答和解題技巧,請關注+評論!如果對大家有幫助,可以轉發幫助更多學子!!!)前面介紹了三種等比數列的常見題型,本期繼續介紹等比數列另外幾種常見題型。題型五、等比數列的前n項和及性質等比數列前n項和公式在運用時,特別要注意對公比q的討論,要分為q等於1和q不等於1兩種情況,另外還要注意等比數列求和公式的推導過程(錯位相減法),這也是數列求和的一個常用方法,後續在數列求和章節會有更詳細地講解。
  • 高中數學數列通項公式,看了老師教的累乘法,學生直呼太簡單了
    前面的文章已經詳細講解了累加法求解數列的通項公式,本文講解另外一種求解數列通項公式的最基本的方法-累乘法,也稱為逐商疊乘法。等比數列的通項公式便是用該方法推導得出的。一、累乘法的基本方法(1)適用條件:當題目中給出的兩項的關係式為a(n+1)=f(n)an,或a(n+1)/an=f(n),或者可以化為這種形式的時候,即可採用累乘法求解通項公式。這種形式最簡單就是f(n)為常數,即等比數列;此外f(n)也可以是分式、冪函數等形式。
  • 高考數學7大考點和15種解題方法,列印收藏!
    數學意味著解題,解題就應該對數學思想、數學方法融會貫通,通過對下面這些解題的方法和技巧的介紹,希望對高中生的數學學習能有一定的幫助。(一)函數與導數函數與導數是高考數學中極為重要的一部分,函數的特點和方法貫穿了高中數學的全過程,主要是考函數的性質,如何利用導數作為工具來解答。
  • 吳國平:要拿到高考數學數列的分數, 就要學會求等差數列及其前n項和
    數列作為高考數學重點內容,一直是高考數學的熱點和必考的考點,自然而然受到廣大考生的關注。在高考數學裡數列一般就涉及等差數列和等比數列相關知識內容,因此,今天我們就一起來簡單講講等差數列及其前n項的和相關的考點,進行分析,希望能幫助到大家。什麼是等差數列?
  • 等比數列解題技巧—基礎知識篇
    等比數列解題技巧—基礎知識篇(更多資料和更詳細的例題解答和解題技巧,請關注+評論!如果對大家有幫助,可以轉發幫助更多學子!!!)等比數列和等差數列作為高中的兩大基本數列,在數列的學習中佔有很重要的地位,是學習其它數列的一個基礎。