科學家研發新螢光顯微鏡

2021-01-13 中國生物技術網

新顯微鏡藝術圖 圖片來源:日本德島大學

在最近發表在《科學進展》上的一項研究中,科學家開發了一種不需要機械掃描就能獲得螢光壽命圖像的新方法。

螢光顯微鏡廣泛用於生物化學和生命科學,因為它允許科學家直接觀察細胞及其內部和周圍的某些化合物。螢光分子能吸收特定波長範圍內的光,然後在較長的波長範圍內重新發射。然而,傳統螢光顯微技術的主要局限性是其結果難以定量評價,而且螢光強度受實驗條件和螢光物質濃度的顯著影響。現在,日本科學家的這項新研究將徹底改變螢光壽命顯微鏡領域。

該方法的主要支柱之一是使用光學頻率梳作為樣品的激發光。一個光學頻率梳本質上是一個光信號,是許多離散的光學頻率的和,它們之間的間隔是恆定的。在這裡,「梳子」指的是信號與光頻率的關係:從光頻率軸上升起密集且等距「尖刺」,類似於梳子。利用專用的光學設備,將一對激發頻率梳信號分解為具有不同強度調製頻率的單個光拍信號(雙梳光拍),每個光拍攜帶單個調製頻率,輻照到目標樣品上。這裡的關鍵是,每束光束都在一個不同的空間位置擊中樣本,在樣本二維表面的每個點和雙梳光拍的每個調製頻率之間形成一一對應的關係。

由於其螢光特性,樣品能重新發射部分捕獲的輻射,同時仍然保持上述頻率—位置對應關係。然後,樣品發出的螢光被簡單地聚焦在高速單點光電探測器上。最後,研究人員用數學方法將測量信號轉換為頻域信號,根據調製頻率處的激發信號與測量信號之間存在的相對相位延遲,很容易計算出每個像素處的螢光壽命。

新方法除了提供對生物過程的更深入的了解外,這種新方法還可以用於多個樣本的同時成像,用於抗原檢測,並有望開發出新的治療方法來治療頑固性疾病,提高預期壽命,從而造福全人類。

相關論文信息:http://dx.doi.org/10.1126/sciadv.abd2102

來源:中國科學報

相關焦點

  • 科學家研發新螢光顯微鏡—新聞—科學網
    新顯微鏡藝術圖  圖片來源:日本德島大學 在最近發表在《科學進展》上的一項研究中,科學家開發了一種不需要機械掃描就能獲得螢光壽命圖像的新方法。 螢光顯微鏡廣泛用於生物化學和生命科學,因為它允許科學家直接觀察細胞及其內部和周圍的某些化合物。螢光分子能吸收特定波長範圍內的光,然後在較長的波長範圍內重新發射。然而,傳統螢光顯微技術的主要局限性是其結果難以定量評價,而且螢光強度受實驗條件和螢光物質濃度的顯著影響。現在,日本科學家的這項新研究將徹底改變螢光壽命顯微鏡領域。
  • 北京大學研製新一代微型化雙光子螢光顯微鏡:解碼大腦
    5月31日,北京大學召開新聞發布會,宣布成功研製新一代微型化雙光子螢光顯微鏡,重量僅2.2克,可佩戴在動物的頭部顱窗上,實時記錄數十個神經元、上千個神經突觸動態信號。其橫向解析度可達到0.65微米,成像質量與商品化大型臺式雙光子螢光顯微鏡可相媲美,遠優於目前領域內主導的、美國腦科學計劃核心團隊所研發的微型化寬場顯微鏡。
  • 新一代微型化雙光子螢光顯微鏡研製成功
    膜生物學國家重點實驗室(中國科學院動物研究所、清華大學、北京大學)程和平院士團隊研製成功了新一代高速高分辨微型化雙光子螢光顯微鏡,獲取了小鼠自由行為過程中大腦神經元和神經突觸活動清晰、穩定的圖像
  • 北京大學召開「成功研製新一代微型化雙光子螢光顯微鏡」專題新聞...
    2017年5月31日上午,北京大學「成功研製新一代微型化雙光子螢光顯微鏡」專題新聞發布會在英傑交流中心陽光廳舉行。教育部科技司副司長李楠、北京大學副校長王傑、中國科學院生物物理研究所所長徐濤、中國科學院蘇州生物醫學工程技術研究所成果轉化處副處長劉宇、北京大學理學部主任饒毅出席發布會。
  • 宗偉健:新一代微型雙光子螢光顯微鏡(多圖)
    2008年錢永健等人由於螢光蛋白(GFP,綠色螢光蛋白)的發現和使用,獲得了諾貝爾化學獎,是對螢光成像技術的一次巨大肯定和推動。光學成像本身具有高解析度、高通量(高速)、非侵入、非毒性等特點,再與螢光蛋白以及螢光染料等標記物在細胞中的定位與表達技術相結合,使得科學家可以特異性的分辨生物體乃至細胞內部不同結構與成分,並且能夠在生命體和細胞仍具有活性的狀態下(活體狀態)對其功能進行動態觀察。
  • 北大研製新一代微型化雙光子螢光顯微鏡 重量僅2.2克
    程和平院士在發布會上介紹研究成果  歷經3年多的協同奮戰,北京大學分子醫學研究所、信息科學技術學院、生物動態光學成像中心、生命科學學院、工學院聯合中國人民解放軍軍事醫學科學院組成跨學科團隊,在國家自然科學基金委國家重大科研儀器研製專項《超高時空分辨微型化雙光子在體顯微成像系統》的支持下,成功研製新一代高速高分辨微型化雙光子螢光顯微鏡
  • 顯微鏡下的「花花世界」——螢光蛋白的發現
    20世紀60年代,一位日本科學家從美國西岸打撈了大量發光水母,帶回位於華盛頓州的實驗室進行研究。這些水母在受到外界的驚擾時會發出綠色的螢光。經過諸多的實驗,他終於搞清楚了這種水母的特殊發光原理。原來,在這種水母的體內有一種叫水母素的物質,在與鈣離子結合時會發出藍光,而這道藍光未經人所見就已被一種蛋白質吸收,改發綠色的螢光。
  • 如何選擇倒置顯微鏡與螢光顯微鏡?
    在細胞培養及相關衍生實驗中,顯微鏡是一個很重要的儀器。目前,市場上有各種類型的顯微鏡,選擇一款符合需求又適用的顯微鏡是一個挑戰,下面為大家介紹倒置顯微鏡和螢光顯微鏡的原理,便於大家選擇。倒置顯微鏡組成和普通顯微鏡一樣,主要包括三部分:機械部分、照明部分、光學部分。
  • 超高解析度顯微鏡:顯微鏡發展史上的新突破
    顯微鏡技術經過長期發展,加之近年來物理學界接二連三出現的重大科研進展,終於,在2008年,顯微鏡發展史上的新成果——超高解析度螢光顯微鏡為科學家所研製出。人們預言,它定會成為生物學家的好幫手。
  • 新一代螢光顯微鏡可輕鬆實現超分辨成像
    近年來,隨著活細胞體系單分子螢光成像技術的發展,膜蛋白單分子研究,特別是受體動力學的研究,已成為目前單分子研究領域中最活躍的研究方向之一。近幾年發展起來的超分辨成像技術因其能夠突破光學衍射極限,而比傳統光學顯微鏡具有更高的解析度和更高的定位精度。
  • 北大研製新一代微型化雙光子螢光顯微鏡 可實時記錄神經元進行腦分析
    北京青年報記者今日從北京大學獲悉,在國家自然科學基金委國家重大科研儀器研製專項《超高時空分辨微型化雙光子在體顯微成像系統》的支持下,北京大學分子醫學研究所、信息科學技術學院、動態成像中心、生命科學學院、工學院聯合中國人民解放軍軍事醫學科學院組成跨學科團隊,歷經三年,終於成功研製新一代高速高分辨微型化雙光子螢光顯微鏡
  • 倒置螢光顯微鏡的使用
    倒置螢光顯微鏡是近代發展起來的新式螢光顯微鏡,其由倒置顯微鏡和落射螢光裝置組成,具有在培養皿或培養瓶內進行顯微觀察的特點,可實現活體細胞和組織、流質、沉澱物等差螢光觀察是科學研究工作中的理想儀器。所以,在醫學科研型研究生的實驗教學中,掌握倒置螢光顯微鏡的使用至關重要,只有正確的使用和妥善的管理倒置螢光顯微鏡,才能發揮它的功能和提高使用率,使之更好地為實驗教學和科學研究服務。
  • 谷歌《Cell》論文:光學顯微鏡+深度學習=螢光顯微鏡
    隨著包括圖像質量自動評估算法和協助病理醫師診斷癌組織在內的機器學習技術在顯微鏡領域的應用越來越廣泛,谷歌因此考慮是否可以結合透射光顯微鏡和螢光顯微鏡這兩種顯微鏡技術來開發一種深度學習系統,從而最大限度降低兩者的不足之處。
  • 北京大學研製新一代顯微鏡:可解碼大腦
    5月31日,北京大學召開新聞發布會,宣布成功研製新一代微型化雙光子螢光顯微鏡,重量僅2.2克,可佩戴在動物的頭部顱窗上,實時記錄數十個神經元、上千個神經突觸動態信號。
  • Nat Biotechnol:中美科學家開發出更快的螢光顯微鏡圖像處理技術...
    在這篇論文中,這些研究人員描述了這種技術可以顯著減少處理利用最尖端顯微鏡創建的高度複雜圖像所需的時間。這類顯微鏡經常被用來捕捉在魚類中移動的血液和腦細胞,可視化觀察線蟲胚胎的神經發育,並精確地確定整個器官內的單個細胞器。隨著顯微鏡不斷變得更好,更快地創建更高解析度的圖像,科學家們發現他們有更多的數據而無法及時處理。
  • 科學家發布革命性螢光標記技術
    霍華德•休斯醫學研究所的科學家們開發了一個革命性的新工具,可以在動物大腦中永久性標記神經元活動。在神經元激發鈣離子流入時,這個工具(螢光蛋白CaMPARI)會從綠色變為紅色。此前,研究者們需要在正確的時間用顯微鏡聚焦正確的細胞才能觀察到神經元活動,現在這個永久性的螢光標記為他們帶來了解放。
  • 第四節 螢光顯微鏡檢查法
    第四節 螢光顯微鏡檢查法   一、螢光顯微鏡   螢光顯微鏡是免疫螢光細胞化學的基本工具。它是由光源、濾板系統和光學系統等主要部件組成。是利用一定波長的光激發標本發射螢光,通過物鏡和目鏡系統放大以觀察標本的螢光圖像(圖3-15)。
  • 新穎的3D光學成像技術提高了螢光顯微鏡效率
    數十年來,科學家一直在使用螢光顯微鏡來研究生物細胞和生物的內部運作。但是,這些平臺中的許多平臺通常太慢,無法跟隨3D的生物學作用,並可能在強光照射下對生物樣本造成破壞。
  • 用於體內成像的無透鏡螢光顯微鏡
    顯微鏡在生命科學領域是一種無處不在的工具,它們的應用已經擴展到了臨床實踐中。通過顯微鏡,醫生可以對眼睛展開檢查,檢查組織是否有癌症跡象,並藉助其進行手術。
  • 超高解析度螢光顯微鏡的應用
    超高解析度螢光顯微鏡正在不斷改變我們對細胞內部結構及運作的認識。不過在現階段,顯微鏡技術還是存在著種種不足,如果人們希望顯微鏡能在生物研究領域發揮重要作用,就必須對其加以改進和提高。