目標序列定位過程中DNA表面探索和操縱子脫靶效應
作者:
小柯機器人發布時間:2020/6/28 10:36:23
瑞典烏普薩拉大學Sebastian Deindl和Johan Elf小組合作揭示了DNA序列定位過程中DNA表面探索和操縱子脫靶效應。這一研究成果在線發表在2020年6月24日出版的《自然》上。
研究人員通過共振能量轉移和螢光相關性測量相結合的方法表徵了單個lac阻遏物(LacI)分子在一維階段DNA尋找過程是如何定位於DNA表面的。為了在微秒級跟蹤滑動LacI分子的旋轉,研究人員使用了實時單分子共聚焦雷射跟蹤結合螢光相關光譜(SMCT–FCS)的方法。螢光信號的波動是通過旋轉耦合滑動精確揭示的,其中LacI每轉橫穿大約40個鹼基對(bp)。這個距離大大超過了DNA 10.5 bp螺旋的節距,表明滑動蛋白經常跳出DNA凹槽,這將導致目標序列的頻繁脫靶。
使用單分子螢光共振能量轉移(smFRET)研究人員直接觀察到這種脫靶效應。對smFRET和SMCT-FCS數據的組合分析顯示,LacI每200-700μs跳一個或兩個凹槽(10-20 bp)。該研究數據表明滑動過程中需要速度和精度之間的平衡:非特異性蛋白質與DNA間的弱相互作用是操縱子脫靶的基礎,但也可以加快滑動速度。研究人員預期SMCT–FCS可在毫秒級的時間尺度內監測旋轉擴散,同時以毫秒的解析度跟蹤單個分子;該方法將適用於許多其他生物相互作用的實時研究,其可將有效觀察時間範圍提高兩個數量級,這有利於更好的觀察這些相互作用。
據悉,許多結合特定DNA序列的蛋白質通過三維擴散與非特異性DNA上的一維滑動相結合來尋找基因組。
附:英文原文
Title: DNA surface exploration and operator bypassing during target search
Author: Emil Marklund, Brad van Oosten, Guanzhong Mao, Elias Amselem, Kalle Kipper, Anton Sabantsev, Andrew Emmerich, Daniel Globisch, Xuan Zheng, Laura C. Lehmann, Otto G. Berg, Magnus Johansson, Johan Elf, Sebastian Deindl
Issue&Volume: 2020-06-24
Abstract: Many proteins that bind specific DNA sequences search the genome by combining three-dimensional diffusion with one-dimensional sliding on nonspecific DNA1,2,3,4,5. Here we combine resonance energy transfer and fluorescence correlation measurements to characterize how individual lac repressor (LacI) molecules explore the DNA surface during the one-dimensional phase of target search. To track the rotation of sliding LacI molecules on the microsecond timescale, we use real-time single-molecule confocal laser tracking combined with fluorescence correlation spectroscopy (SMCT–FCS). The fluctuations in fluorescence signal are accurately described by rotation-coupled sliding, in which LacI traverses about 40 base pairs (bp) per revolution. This distance substantially exceeds the 10.5-bp helical pitch of DNA; this suggests that the sliding protein frequently hops out of the DNA groove, which would result in the frequent bypassing of target sequences. We directly observe such bypassing using single-molecule fluorescence resonance energy transfer (smFRET). A combined analysis of the smFRET and SMCT–FCS data shows that LacI hops one or two grooves (10–20 bp) every 200–700 μs. Our data suggest a trade-off between speed and accuracy during sliding: the weak nature of nonspecific protein–DNA interactions underlies operator bypassing, but also speeds up sliding. We anticipate that SMCT–FCS, which monitors rotational diffusion on the microsecond timescale while tracking individual molecules with millisecond resolution, will be applicable to the real-time investigation of many other biological interactions and will effectively extend the accessible time regime for observing these interactions by two orders of magnitude.
DOI: 10.1038/s41586-020-2413-7
Source: https://www.nature.com/articles/s41586-020-2413-7