新方法揭示小鼠全腦血管結構
作者:
小柯機器人發布時間:2020/3/16 14:54:55
德國組織工程和再生醫學研究所Ali Ertrk和慕尼黑工業大學Bjoern Menze課題組合作,對小鼠全腦血管進行了機器學習分析。論文於3月11日在線發表在《自然-方法學》。
在本研究中,研究人員開發了一個基於深度學習的網絡來量化和分析腦血管,稱為血管分割和分析管道(VesSAP)。該方法使用帶轉移學習方法對卷積神經網絡(CNN)進行分割,並達到了人類水平的準確性。
通過使用VesSAP,研究人員將整個C57BL / 6J、CD1和BALB / c小鼠腦載入到Allen小鼠腦圖集後,在微米級分析了它們的血管特徵。
研究人員揭示了CD1小鼠繼發性顱內側血管生成的證據,並發現與大腦相比腦幹的血管生成減少。因此,VesSAP可以對清除的小鼠大腦血管結構進行無偏倚且可擴展的量化,並提供對大腦血管功能的生物學見解。
據了解,利用組織清除方法可以實現無需切片而對生物樣本進行成像。然而,在三維水平對大型成像數據集進行可靠且可擴展的分析仍然是一個挑戰。
附:英文原文
Title: Machine learning analysis of whole mouse brain vasculature
Author: Mihail Ivilinov Todorov, Johannes Christian Paetzold, Oliver Schoppe, Giles Tetteh, Suprosanna Shit, Velizar Efremov, Katalin Todorov-Vlgyi, Marco Dring, Martin Dichgans, Marie Piraud, Bjoern Menze, Ali Ertrk
Issue&Volume: 2020-03-11
Abstract: Tissue clearing methods enable the imaging of biological specimens without sectioning. However, reliable and scalable analysis of large imaging datasets in three dimensions remains a challenge. Here we developed a deep learning-based framework to quantify and analyze brain vasculature, named Vessel Segmentation & Analysis Pipeline (VesSAP). Our pipeline uses a convolutional neural network (CNN) with a transfer learning approach for segmentation and achieves human-level accuracy. By using VesSAP, we analyzed the vascular features of whole C57BL/6J, CD1 and BALB/c mouse brains at the micrometer scale after registering them to the Allen mouse brain atlas. We report evidence of secondary intracranial collateral vascularization in CD1 mice and find reduced vascularization of the brainstem in comparison to the cerebrum. Thus, VesSAP enables unbiased and scalable quantifications of the angioarchitecture of cleared mouse brains and yields biological insights into the vascular function of the brain.
DOI: 10.1038/s41592-020-0792-1
Source: https://www.nature.com/articles/s41592-020-0792-1