用微分方程巧妙分析車燈的反光曲面

2020-12-05 電子通信和數學

探照燈的反光曲面;設所求的曲面是由曲線繞x軸旋轉而成的,並設光源位於原點O,而以p(x,y)表示曲線y=y(x)上的動點,以PQ表示曲線在P點的切線。

我們需要自光源O發出的光線經反光曲面反射而成平行於x軸的光束,由光學的反射定律(光線的入射角等於反射角),推出α=β,而平行於直線的同位角推出γ=α+β=2β,而切線PQ的斜率為tanβ=dy/dx,向徑OP的斜率為tanγ=y/x,所以根據三角公式

推出

由此不難解出

或者等於

注意只要把y換成-y,方程(7)就變成(6),由此不妨只討論(6),明顯根據前幾篇文章可知,它是一個齊次方程

按方程(6)的形式,把x看做y的未知函數比較方便,所以把(6)寫成

令x=yu,代入上式得到

從而可知

再分離變量得到

取不定積分,得到通積分

得到

化簡就可以得到

上述兩個式子相加得到

再利用關係式u=x/y,就得到方程,則得到方程(8)的通解為

其中C是任意常數,這是拋物線的方程,容易畫出它的圖形,這就說明了為什麼探照燈的反光鏡面須要做成旋轉拋物面。

相關焦點

  • 分析學的5大「步」:微積分到函數論、泛函分析、微分方程
    他推廣了單位解析函數到多位解析函數;引入了「黎曼曲面」的重要概念,確立了復變因數的幾何理論基礎;證明了保角映射基本定理;威爾斯特拉斯完全擺脫了幾何直觀,以冪級數為工具,用嚴密的純解析推理展開了函數論。並將解析函數定義為可以展開為冪級數的函數,圍繞著奇點對函數性質進行研究。
  • 質量守恆的微分表述——連續性方程(中)
    本系列文章分三篇,分別是《電荷守恆的微分表述》、《質量守恆的微分表述》、《守恆量的普遍微分表述、及其任意時空下推廣》。最重要是第三篇,為了更容易理解最後的推理,需要足夠了解前面兩部分內容。本文主要是通過類比電荷的連續性方程推導過程,逐步導出質量守恆的微分表述。
  • 偏微分方程:作用、分析與數值求解
    報告題目:偏微分方程:作用、分析與數值求解 報 告 人:江松 研究員 北京應用物理與計算數學研究所 報告時間:2020年9月27日9:00 報告地點:數學學院二樓報告廳 校內聯繫人:張然zhangran@jlu.edu.cn 報告摘要: 科學與工程技術
  • 常微分方程中的重要方程:黎卡提方程(一階二次非線性微分方程)
    前面我們了解了什麼是一階線性微分方程,可分離變量微分方程,以及齊次微分方程,本篇講升上一個高度,一階微分方程中的二次微分方程義大利數學家在17世紀提出了著名的「黎卡提方程」,這個方程看上去挺簡單的,但分析起來相當複雜
  • ...烏倫貝克 幾何分析 1983年 非線性偏微分方程-國際新聞-東方網
    阿貝爾獎委員會評價稱,烏倫貝克在幾何分析和規範場論的基礎工作極大地改變了數學格局,還稱讚她是「科學和數學領域中性別平等的強烈倡導者」。  阿貝爾獎委員會主席Hans Munthe-Kaas表示,凱倫·烏倫貝克因其在幾何分析和規範理論方面的基礎工作獲得2019年的阿貝爾獎,她的貢獻顯著改變了數學領域。
  • 描述物質運動變化的數學學科:常微分方程、偏微分方程
    微分方程的形成與發展與力學、天文學、物理學等科學技術的發展密切相關。因為在現實的世界中,物質的運動及其變化規律在數學上是用函數關係來描述的,這意味著問題的解決就是要去尋求滿足某些條件的函數,而這類問題就轉換為微分方程的求解問題。
  • 《歐拉方程及微分方程建模》思路與方法
    將原歐拉方程中xky(k)全部用上式代入,則可以將原方程轉化為以y為函數,u為自變量的常係數線性微分方程 【注】歐拉方程其實就是一種線性微分方程的結構,只不過不具有直接的顯性結果,需要換元變換得到。 二、常係數線性微分方程組舉例常係數線性微分方程組解法步驟:第一步:用消元法消去其他未知函數 , 得到只含一個函數的高階方程; 第二步:求出此高階方程的未知函數;
  • 常微分方程
    )非齊次線性微分方程的通解可以表示為它的一個特解與它對應的齊次線性微分方程的通解之和(6)線性微分方程的通解包含了這個方程的所有解2.>(2) 求常係數非齊次線性微分方程的特解的待定係數法和拉普拉斯變換法(3) 求一般非齊次線性微分方程特解的常數變易法(4) 求一般二階齊次線性微分方程的冪級數解法線性微分方程組
  • 微分方程——拉普拉斯的魔法
    拉普拉斯的魔法掌握了微分方程這一有力工具的自然科學家們, 以此為武器著手於揭開自然的秘密。尤其在天文學界獲得了驚人的成功。這是由於有了萬有引力定律,極易建立微分方程的緣故。天文學家利用解微分方程,能夠預言幾年後的日食將在何日的何時何分何秒發生以及持續多長時間。這種關於日食的預言向市民們顯示了數學的威力。給出了微分方程,並確定了其中某一時刻的位置和速度,就能獲得一種解答。牛頓說過最初的推動力系山上帝給予,以後就沒有任何幹預了。
  • 最簡單的常微分方程:變量分離微分方程
    常微分方程是微積分學方程中常見的,應用非常廣泛的方程,下面就來討論常微分方程中最簡單的變量分離微分方程。設一階微分方程式:其中f(x,y)是給定的函數,我們要做的工作是求微分方程的解y=y(x),可是一般不能用初等方法來解出這個微分方程,但是當微分方程的右端f(x,y)取某幾種特殊的類型時,就可用初等積分法求解。本篇講一個重要的特殊情形此時開篇中的微分方程就變成了這樣的方程稱之為變量分離的方程。
  • 偏微分方程 學習筆記
    有一句話叫做「數學是大自然的語言,而偏微分方程則是大自然的語法」,從此足以看出偏微分方程在自然界中的廣泛應用。無論是工程領域,量子領域,還是金融領域等,都有著偏微分方程的影子。偏微分方程理論研究的發展,更是衍生出了一系列新的研究領域,例如金融工程這一學科,開始獨立於傳統的金融學,就得益於偏微分方程應用到了期權定價當中,從而催生出了現代金融理論。
  • 帶你用matlab輕鬆搞定微分方程
    考慮大多數讀者對微分方程求解方法比較陌生,所以過冷水本期簡單普及一下微分方程的求解問題。關於微分方程你需要了解:含有未知的函數及其某些階的導數以及其自變量本身的方程稱為微分方程。如果未知函數是一元函數,則稱為常微分方程。如果未知函數是多元函數,則稱為偏微分方程。聯繫一些未知函數的一組微分方程稱為微分方程組。
  • 微分方程重點一:常係數齊次線性微分方程
    微分方程前面的都是一些基礎,如果是一些和其他題型結合在一起的題目的話,可能會考前面的微分方程內容,比如說求知道函數的全微分,讓求原函數這類的。但是如果微分方程考大題的話,就是考二階常係數非齊次線性微分方程了。之前講的微分方程解的結構是基礎,主要是為了說明做題時我們需要求什麼。
  • 微分方程篇:為你構建微分方程框架
    本章主要講解部分微分方程的解法。接下來的複習依次開始。微分方程的概念:1.定義:凡表示未知函數、未知函數的導數與自變量之間的關係的方程,叫做微分方程。2.階數:微分方程中所出現的最高階導數的階數,叫做微分方程的階。3.通解:微分方程的解中含有任意常數,且任意常數的個數與微分方程的階數相同(任意常數是獨立的,它們不能合併是的任意常數個數減少),就可推導得一個微分方程的解至少有一個任意常數。
  • 常微分方程:線性微分方程解的三個重要特徵
    前一篇《帶你走進微積分的堂學習:一階線性微分方程式的基礎原理》詳細討論了線性微分方程的結構以及通解特性,本篇我們藉此機會指出一階線性微分方程解的三個重要特徵1)有一階線性微分方程,線性微分方程(1)的一切解在α<x<β上存在,面對非線性微分方程,一般就沒有這種解的全局存在性,例如非線性微分方程關於x的定義域為-∞<x<+∞,而它的解,例如y=tanx的存在區間只是-π/2<x<π/2,這就表明,非線性微分方程解的存在區間一般是局部的,而不像線性微分方程的解那樣是全局的。
  • 偏微分方程 期末複習
    這幾天看到了兩套往年偏微分方程的期末考試試題,自己從頭到尾做了一遍,在現有答案版本的基礎上自己又整理了一些內容,在此發出來供大家期末複習參考。
  • 微分方程重點二:常係數非齊次線性微分方程
    小編在之前的文章:微分方程重點一中講了常係數齊次線性微分方程的內容。那是微分方程難點的一半,接下來的內容是另外一半。讓我們在講解之前,先來對一下答案。題目在微分方程重點一:常係數齊次線性微分方程中。接下來就是講微分方程的最後一個重點了,也是考試微分方程中最後的部分了,不過既然是最後一部分,那麼就有最後一部分的難。這部分主要講的就是求特解,這也是這裡的難點。
  • 微分方程:極富生命力,包羅萬象的數學分支
    因為在現實的世界中,物質的運動及其變化規律在數學上是用函數關係來描述的,這意味著問題的解決就是要去尋求滿足某些條件的函數,而這類問題就轉換為微分方程的求解問題。解微分問題的基本思想類似於解代數方程,要把問題中已知函數和未知函數之間的關係找出來,進而得到包含未知函數的一個或幾個方程,然後使用分析的方法去求得未知函數的表達式。
  • 從代數方程、函數方程到微分方程
    代數方程,是要求計算出滿足條件的數。相當於由結果導出原因。直線思考的時候,計算一般得到一個明確的結果。但是,知道結果計算原因的話可能的情況比較多。無解、一解、多解或者無限多的解。這時是轉換學生思考的第一階段。跳過這個檻已經拉開大半的人。記得,小學時候難以理解一元二次方程的求解。2.函數方程:函數相對於靜態的數,有一種動態的味道。我們中學時將其上升為「代數」。
  • 了解高階線性微分方程——初識二階線性微分方程
    題目在小編的上一篇文章:我要把你變弱——可降階的高階微分方程。做這部分的題目,首先要分清楚每道題是三種類型中的哪一種,然後才可下手做題。小編是這樣判斷的,首先看看方程中有沒有y,如果有y,那麼肯定是第三類,如果沒有,那就是第一或者第二類。