Alexis T. Bell教授,現任加州大學伯克利分校化工系Dow Professor of Sustainable Chemistry,勞倫斯伯克利國家實驗室Faculty Senior Scientist,美國科學院院士、美國工程院院士、美國藝術與科學院院士、美國科學進步會會士、日本促進科學學會會士、俄羅斯科學院西伯利亞分院榮譽教授、中國科學院愛因斯坦講席教授;Catalysis Reviews - Science and Engineering主編、Proceedings of the National Academy of Sciences (PNAS)編輯、Journal of Physical Chemistry A/B/C 編委會成員。歷任加州大學伯克利分校化工系主任、化學學院院長等職務。
Alexis T. Bell教授是國際公認的在催化反應機制與動力學、原子和分子水平的催化活性中心表徵研究的領導者,在 2008年被美國化工學會提名為「百名現代化學工程師」(One Hundred Engineers of the Modern Era)之一。Bell課題組的主要研究方向為催化劑活性中心組份和結構的識別,並對如何限制整體催化劑活性和選擇性的基本過程加以解釋。這些研究涉及到許多實驗和理論方法的應用,其中大部分是由Bell及其合作者提出的。在過去的幾年裡,他的主要研究重心為甲醇和乙醇氧化羰基化、二甲氧基甲烷羰基化、烷烴氧化脫氫、N2O分解和烯烴的環氧化反應等。他還在生物質轉化燃料和電化學二氧化碳固定領域開拓了新的方向。
傳統化石能源(煤,石油和天然氣)的燃燒是是造成大氣中CO2濃度持續上升,引發全球溫室效應的重要原因。為了避免日益嚴重的氣候變化對社會發展的影響,並維持當前經濟和社會福祉的持續增長,我們必須加快從化石燃油向可再生燃油轉型的步伐。目前來說,在中短程、低負荷的運輸模式中,已經可以使用可充電電池和氫燃料電池來,但航空、海運和長途貨運仍主要依賴於碳基燃料。
在本次講座中,Bell教授將介紹和評述如何通過催化反應,利用生物質和大氣中的CO2作為「碳源」來製備綠色燃料:1)將脂肪酸或者木質纖維素生物質的碳水化合物作為合成子,經由布朗斯特酸或路易斯酸鹼對的催化轉化,來生產各種柴油和航空燃料;2)經由Cu基電催化劑,將CO2分子選擇性的轉化為碳氫化合物和醇類分子。
The combustion of fuels derived from fossil energy reserves (coal, petroleum, and natural gas) is responsible for the continuing rise in the concentration of atmospheric CO2 and its consequent effects on global climate. To avoid increasingly serious effects of climate change and to enable societies to grow and maintain their economic and social wellbeing, it is essential that they switch from fossil to renewable energy sources for transportation fuels. While low and medium duty modes of transportation can be electrified using rechargeable batteries and hydrogen fuel cells, aviation, marine, and long-distance trucking are likely to require carbon-based fuels.
This talk will examine the role of catalysis in providing these types of fuels. As the carbon source, we will consider biomass and atmospheric CO2. We will begin by examining the production of synthons from carbohydrate portion of lignocellulosic biomass and from fatty acids and will show that it is possible to produce a variety of diesel and aviation fuels from these intermediates. The catalysts required for these reactions are Brønsted acids or Lewis acid-base pairs. The second half of the talk will examine what is required to produce high faradaic yields of hydrocarbons and alcohols via the electrochemical reduction of CO2 over Cu. For each part of the talk, we will examine how fundamental knowledge of catalyst structure and composition provides guidance for the selection of active and selective catalysts.