新技術助力單細胞RNA測序數據聚類分析
作者:
小柯機器人發布時間:2020/5/6 14:35:34
英國威康桑格研究所Mara K. N. Lawniczak、Martin Hemberg、Haynes Heaton等研究人員合作開發了單細胞RNA測序數據聚類分析的新技術。該項研究成果於2020年5月4日在線發表在《自然—方法學》雜誌上。
研究人員開發了souporcell技術,這是一種利用在scRNA-seq讀碼中檢測到的遺傳變異將細胞聚集的方法。研究人員表明,它在基因型聚類、雙峰檢測和環境RNA估計方面實現了很高的準確性,這些方面在一系列具有難度的實驗中得以驗證。
據了解,對於包含基因型混合物的樣品,無論是天然的還是實驗性組合的,都需要對單細胞RNA測序(scRNA-seq)數據進行反卷積的方法。跨供體的多路復用是一種流行的實驗設計,可以避免批量效應,降低成本並提高雙線檢測。通過使用在scRNA-seq讀數中檢測到的變體,可以將細胞分配給其原始供體,並鑑定可能具有高度相似轉錄譜的交叉基因型雙峰,從而排除了通過轉錄譜進行檢測的可能性。另外,可以使用更細微的交叉基因型變異汙染來估算環境RNA的量。環境RNA是液滴分開前細胞裂解引起的,並且是scRNA-seq分析的重要混雜因素。
附:英文原文
Title: Souporcell: robust clustering of single-cell RNA-seq data by genotype without reference genotypes
Author: Haynes Heaton, Arthur M. Talman, Andrew Knights, Maria Imaz, Daniel J. Gaffney, Richard Durbin, Martin Hemberg, Mara K. N. Lawniczak
Issue&Volume: 2020-05-04
Abstract: Methods to deconvolve single-cell RNA-sequencing (scRNA-seq) data are necessary for samples containing a mixture of genotypes, whether they are natural or experimentally combined. Multiplexing across donors is a popular experimental design that can avoid batch effects, reduce costs and improve doublet detection. By using variants detected in scRNA-seq reads, it is possible to assign cells to their donor of origin and identify cross-genotype doublets that may have highly similar transcriptional profiles, precluding detection by transcriptional profile. More subtle cross-genotype variant contamination can be used to estimate the amount of ambient RNA. Ambient RNA is caused by cell lysis before droplet partitioning and is an important confounder of scRNA-seq analysis. Here we develop souporcell, a method to cluster cells using the genetic variants detected within the scRNA-seq reads. We show that it achieves high accuracy on genotype clustering, doublet detection and ambient RNA estimation, as demonstrated across a range of challenging scenarios.
DOI: 10.1038/s41592-020-0820-1
Source: https://www.nature.com/articles/s41592-020-0820-1