模型法求解一元二次方程初探

2021-01-14 數學山人行

一元二次方程ax^2+bx+C=0(a≠0)的解法有多種,不同的模型採取不同的方法:

1、(x+a)^2=b(b>0)型。左邊是完全平方式,右邊是一個正數或是一個完全平方式,採用兩邊開平方法。關鍵是取正負號,否則會失根,這是學生常常出錯的地方。

2、因式分解型。用因式分解的方法把方程左邊變成兩個因式的積,右邊是0。即(Ⅹ+a)(X+b)=0型。?

3、公式法型。這個模型被稱為萬能型。只要一元二次方程根的判別式△≥0,都可用公式法求解。但若能用十字相乘法分解,優先用十字相乘法,在不能分解的前提下,只能用公式法了。在學生進入高中後,發現他們在解一元二次方程或一元二次不等式的時候,是先考慮公式的,在多數情況下是費時費力不討好,即浪費時間浪費精力還容易出錯。

這個類型學生在初中都學得很好,就不舉例說明了。

4、配方型。形如ax^2+bx=c,通過配方,轉化為a(×+b/2a)^2=c+b^2/4a。

5、雙二次型。先換元降冪變成普通的一元二次方程,再求解。

6、x+a/x=b型。倒數型也是分式方程。解法是去分母化簡為整式方程。難點是產生增根要檢驗。

7、含有字母的一元二次方程模型。若二次項係數含有字母,需討論二次項係數是否為零,若為零,看是否是一次方程;若不為零,再考慮判別式△。

相關焦點

  • 2018中考數學知識點:一元二次方程求解方法
    下面是《2018中考數學知識點:一元二次方程求解方法》,僅供參考!   一元二次方程求解方法     1、直接開平方法     利用平方根的定義直接開平方求一元二次方程的解的方法叫做直接開平方法。直接開平方法適用於解形如(x+a)2=b的一元二次方程。
  • 一元二次方程求解過程推導
    一元二次方程的解法主要有配方法、公式法和因式分解法等。首先介紹配方法。將一元二次方程化為如下形式若解得以上是用配方法求解一元二次方程的過程,目的就是為了等式左邊配成一個完全平方式,如果等式右邊為非負,則方程在實數範圍內有解。
  • 初中數學一元二次方程的一般求解方法,可以整理到筆記本上
    初中階段我們學習了幾種方程,分式方程,一元一次方程,二元一次方程,其實不難發現,這幾種方程的求解殊途同歸,都是要化成一元一次方程來進行求解。初三我們要學習新的一種方程,一元二次方程,這個方程的求解與以往已經完全不同。
  • 因式分解法解一元二次方程的口訣
    在解一元二次方程的方法中,因式分解法還是既簡單又實用的,在解題中也使用非常頻繁。我總結了幾句口訣,希望能對你的學習有幫助。在使用因式分解法解一元二次方程時,有以下幾點,我想提醒大家:①因式分解法解一元二次方程時,等式右邊必須為0.②方程中如果有括號不要急於去掉括號,要先觀察方程是否可採用因式分解法求解。
  • 初中數學一元二次方程求解例題分析,強化練習求根方法
    之前我們講解了一元二次方程的概念和幾種求解方法,比如直接開平方,配方法,因式分解法,公式法,這節課我們具體根據例題,來講解這幾種方法的應用。二、配方法在化成直接開平方法求解的時候需要檢驗方程右邊是否是非負的,如果是則利用直接開平方法求解即可,如果不是,原方程就沒有實數解.
  • 中考數學天天練之公式法求解一元二次方程練習題以及答案詳解
    走進2020年中考數學練習題之一元二次方程習題練習第二講本次課程我們主要來帶著大家練習一下如何使用公式法求解一元二次方程的根,通過這次課程學生要能靈活使用公式求解一元二次方程的根;習題目錄和分值題目分為四道大題,總共100分,分別為:一道選擇題
  • 一元二次函數與一元二次不等式和方程
    2019高考數學之一元二次函數與一元二次不等式1 概念一元二次函數:一個未知數,未知數的最高次數為二次。一元二次方程:一個未知數,未知數最高次數為二次的方程(等式)。基本概念2 聯繫與區別一元二次函數的圖像即可得到一元二次方程的解,其為一元二次函數圖像與
  • 初中數學:一元二次方程基礎知識點
    初中數學:一元二次方程基礎知識點一元二次方程基本知識點一元二次方程知識框架一元二次方程的有關概念1. 一元二次方程的概念:通過化簡後,只含有一個未知數(一元),並且未知數的最高次數是2(二次)的整式方程,叫做一元二次方程。
  • 因式分解法解一元二次方程
    因式分解的方法有:二、 從實際問題中探究一元二次方程的解法提出問題:觀察方程的左邊你能發現有什麼特點?如何解這個一元二次方程?總結:像上面這種利用因式分解解一元二次方程的方法叫做因式分解法.注意:因式分解時,方程右邊為0三、 例題講解:四、一元二次方程解法再探究五、課堂小結:1、因式分解法解一元二次方程步驟(1)將方程變形,使方程的右邊為零;(
  • 數學專題——一元二次方程根的分布
    一元二次方程是初中數學中必學的內容,而且也是初中數學中的難點部分,在中考數學中所佔的比例也很大,因此學好一元二次方程極為重要。不僅如此,在歷年的高考試題中,一元二次方程總是以二次函數的形式出現,主要考查一元二次方程根的分布。基礎內容總結:
  • 九數上:公式法解一元二次方程,你學會了嗎?
    同學們大家好,我是老朋友小隴老師,上節內容,我們推送了人教版九年級數學用配方法解一元二次方程的知識內容,本節將繼續推送九年級數學用公式法解一元二次方程的知識詳解,還沒有掌握的同學務必要看看,相信會對你有很大的幫助。
  • 九年級上冊數學第一單元第一講一元一次方程和一元二次方程
    1 你要認識的概念長相特徵回憶舊知識:一元一次方程:含有一個未知數,未知數最高次數為1的等式為一元一次方程。例如:4x+4=0為關於x的一元一次方程。在舊知識的基礎上改進,學習新知識:一元二次方程:首先必須是等式,其次是含有一個未知數,再次未知數的最高次數必須為2,這個方程就是關於某個未知數的一元二次方程。
  • 一元二次方程的解法,一元二次方程係數與根的關係運用
    今天分享的內容——一元二次方程的知識一.一元二次方程的概念二.降次——解一元二次方程直接開平方法體現了降次思想,將一元二次方程轉化為兩個一元一次方程來解。在一元二次方程aⅹ2+bⅹ+C=0(a≠0)中,若a,c異號,則方程一定有兩個不相等的實數根,判別式通常用希臘字母△表示,即△=b2-4ac。
  • 【數學發現】一元二次方程求根公式
    不過由於當時沒有發明符號代數,在這些資料上,說清楚一個題目之後,就用四則運算把它計算出來,今天的人們很難嚴格地劃分這樣的計算是在解一元一次方程還是在做算術題。對於受過九年制義務教育的人來說,一元二次方程是非常熟悉的內容。我們能解任何一個一元二次方程(包括判定一個一元二次方程沒有實數根),原因是我們掌握了一元二次方程的求根公式。
  • 《一元二次方程》的4個知識點,這都沒掌握好,考高分就是妄想
    其實,對於一元二次方程的理解,我們還應進一步總結。一是判斷一元二次方程一般應先化簡,再判斷。二是判斷一個方程是否為一元二次方程的主要依據是:①必須是整式方程;②只含有一個未知數;③未知數的最高次數是2次;④二次項係數不為零。
  • 以實例跟我學C語言:如何求解一元二次方程的根
    例子說明對於如下的一元二次方程:設計C語言程序,輸入一元二次方程的三個係數a、b、c,求解出該方程的兩個根,並且允許用戶在程序中多次輸入不同的係數,以求解不同的一元二次方程的解。編程思路分析對於該方程,令delta=b^2-4*a*c,從數學的角度來講,我們需要根據delta的值來判斷該方程的根情況:當delta>=0時,其兩個根為實數解,分別為(-b+sqrt(delta))/(2*a)和(-b-sqrt(delta))/(2*a);
  • 初中數學解一元二次方程,四種解法各有不同,學會靈活運用
    一元二次方程是中考的重點內容,也是初中數學學習的重點,解一元二次方程是重要的應用,不管是直接開平方,還是配方法、公式法、因式分解法等等方法解方程,四種解法各有不同,不同的依據,不同的適用範圍,都需要同學們重點掌握的,然後根據題目的實際情況,選擇最佳的解題方法。
  • 中考第一課堂,一元二次方程中的求根公式(中考必考題)
    一元二次方程 ,在中高考中是必考的題型,而且佔據大部分的分數。可以說是中考、高考的重點。甚至會在後面演變成更高次的方程的求解問題,但是不管幾次的方程,最終都要通過換元等方式,演變成一元二次方程來求解,所以無論是中考,或者是高考,一元二次方程的求解,是必須掌握的方程求解方式。
  • 暑假預習一元二次方程解法詳解,學會歸類總結,總結方法快速解題
    通常來說,一元二次方程的解法有:直接平方法、配方法、公式法、因式分解法、十字相乘法(本質還是因式分解法)。通過例題的方式和同學們一起總結歸類出當遇到一元二次方程求解值選擇什麼樣的方法直接開平法直接開平方法顧名思義就是利用平方根來進行求解,結合平方根的相關知識,那麼形如X^2=p或者(x+m)^2=p的方程就可以直接用開平方法。
  • 《實際問題與一元二次方程》設計
    一、教材分析: 1、教材的地位和作用: 生活中不少實際問題的解決都要用到方程的知識,在學習本節課之前,學生已經學會了用一元一次方程、二元一次方程(組)解決實際問題,所以本節課對學生來說並不陌生。本節內容是運用一元二次方程分析解決生活中的兩類實際問題:傳播問題和增長率問題。