在12月1日發表在刊物《Journal of the American Chemical Society》上的文章中,科學家將兩種自然存在於血液中的分子結合成了分子配合物,這種配合物能利用太陽能將水分解為氫氣和氧氣。
這種分子配合物利用從太陽獲得的能量創造出氫氣,這是對於傳統造氫的電極法的很好替代,而且這種技術將來也可能被應用於新型的製造氫替代能源的方法。
來自日本Waseda大學的Tsuchida教授和Komatsu教授,通過和倫敦帝國學院的同事合作,將血液中的白蛋白和卟啉結合成了大型分子配合物,白蛋白是血清中最上層的成分,而卟啉用於攜帶氧氣到全身各處,它還是造成血液呈紅色的原因。卟啉通常和金屬結合在一起,血液中的卟啉中心有一個鐵原子,但是科學家在實驗中將這個鐵換成了鋅,這完全改變了卟啉的化學性質。
接著小組將改變後的卟啉分子和白蛋白結合,這種白蛋白同樣經過了遺傳工程技術的修正,能提高整個過程的效率。結果是科學家證明了這種分子配合物對於光非常敏感,能捕捉光的能量將水分子分裂為氫和氧。
帝國理工學院的細胞分子生物學系的結構生物學家Stephen Curry博士表示:「這結果顯示,通過改變小的成分,例如卟啉分子的金屬,就可以操縱人體內自然的分子和蛋白。能夠利用這些生物結構將水分解是非常令人激動的,未來這能為我們長期提供更好的綠色氫能源。」
Here comes another twist to the 'bio-' prefix we use so often: scientists have combined two molecules that occur naturally in our blood to engineer a molecular complex that uses solar energy to split water into hydrogen and oxygen, says research published today in the Journal of the American Chemical Society .
This biological molecular complex can use energy from the sun to create hydrogen gas, providing an alternative to electrolysis, the method typically used to split water into its constituent parts. The breakthrough may pave the way for the development of novel ways of creating hydrogen for use as fuel in the future.
Professors Tsuchida and Komatsu from Waseda University, Japan, in collaboration with Imperial College London, synthesised a large molecular complex from albumin, a protein molecule that is found at high levels in blood serum, and porphyrin, a molecule which is used to carry oxygen around the body and gives blood its deep red colour. Porphyrin molecules are normally found combined with metals, and in their natural state in the blood they have an iron atom at their centre. The scientists modified the porphyrin molecule to swap the iron for a zinc atom in the middle, which completely changed the chemistry and characteristics of the molecule.
This modified porphyrin molecule was then combined with albumin; with the albumin molecule itself being modified by genetic engineering to enhance the efficiency of the process. The resulting molecular complex was proven to be sensitive to light, and can capture light energy in a way that allows water molecules to be split into molecules of hydrogen and oxygen.