研究發現神經膠質瘤中電信號與突觸信號的整合
作者:
小柯機器人發布時間:2019/9/19 13:24:07
美國史丹福大學Michelle Monje小組的一項最新研究發現神經膠質瘤中的電信號與突觸信號能夠整合進神經迴路中。該研究於2019年9月18日在線發表於《自然》。
研究人員發現神經元和神經膠質瘤相互作用包括通過真正的AMPA受體依賴性神經元與神經膠質瘤突觸之間的電化學通信。神經元活動還引起非突觸活性依賴性鉀電流,其通過間隙連接介導的腫瘤互連擴增,形成電耦合網絡。通過體內光遺傳學檢測到的神經膠質瘤膜的去極化促進增殖,而藥理或遺傳阻斷的電化學信號傳導能夠抑制神經膠質瘤異種移植物的生長並延長小鼠存活。
這項工作強調了膠質瘤增加神經元興奮性和活動調節膠質瘤生長的積極反饋機制,此外人類術中皮層腦電圖也顯示膠質瘤浸潤腦中皮質興奮性增加。總之,這些發現表明神經迴路中突觸和電信號的整合能夠促進膠質瘤進展。
據了解,高級別膠質瘤是致命的腦癌,其進展受到神經元活動的強烈調節。活動調節的生長因子釋放促進膠質瘤生長,但僅此不足以解釋神經元活動對膠質瘤進展的影響。
附:英文原文
Title: Electrical and synaptic integration of glioma into neural circuits
Author: Humsa S. Venkatesh, Wade Morishita, Anna C. Geraghty, Dana Silverbush, Shawn M. Gillespie, Marlene Arzt, Lydia T. Tam, Cedric Espenel, Anitha Ponnuswami, Lijun Ni, Pamelyn J. Woo, Kathryn R. Taylor, Amit Agarwal, Aviv Regev, David Brang, Hannes Vogel, Shawn Hervey-Jumper, Dwight E. Bergles, Mario L. Suv, Robert C. Malenka, Michelle Monje
Issue&Volume: 2019-09-18
Abstract:
High-grade gliomas are lethal brain cancers whose progression is robustly regulated by neuronal activity. Activity-regulated release of growth factors promotes glioma growth, but this alone is insufficient to explain the effect that neuronal activity exerts on glioma progression. Here we show that neuron and glioma interactions include electrochemical communication through bona fide AMPA receptor-dependent neuron–glioma synapses. Neuronal activity also evokes non-synaptic activity-dependent potassium currents that are amplified by gap junction-mediated tumour interconnections, forming an electrically coupled network. Depolarization of glioma membranes assessed by in vivo optogenetics promotes proliferation, whereas pharmacologically or genetically blocking electrochemical signalling inhibits the growth of glioma xenografts and extends mouse survival. Emphasizing the positive feedback mechanisms by which gliomas increase neuronal excitability and thus activity-regulated glioma growth, human intraoperative electrocorticography demonstrates increased cortical excitability in the glioma-infiltrated brain. Together, these findings indicate that synaptic and electrical integration into neural circuits promotes glioma progression.
DOI: 10.1038/s41586-019-1563-y
Source:https://www.nature.com/articles/s41586-019-1563-y