分子振動會降低有機太陽能電池中可達到的最大光電壓

2020-12-03 科技報告與資訊

德國德勒斯登工業大學的和比利時哈塞爾大學的科學家研究了限制有機分子材料太陽能電池效率的物理原因。目前,此類電池的電壓仍然過低,這也是其效率較低的原因之一。

在他們的研究中,通過研究薄膜中分子的振動,科學家們能夠證明非常基本的量子效應,即所謂的零點振動,可以對電壓損耗做出重大貢獻。該研究現已發表在《Nature Communications》雜誌上。

太陽能電池是全球能源生產轉變的重要節點。基於有機材料(即碳基材料)的有機光伏(OPV)有望成為「可再生能源」結構中的重要支柱,因為與常規的矽基光伏材料相比,它們具有更好的生態性能,僅需少量材料即可生產薄膜。但是,必須進一步提高效率。它基於各種特性值,例如開路電壓,其值太低目前是OPV效率仍然不高的主要原因。

該研究調查了造成這種情況的物理原因,包括薄膜中分子的振動。結果表明,所謂的零點振動(一種量子物理學的效應,表徵了絕對溫度為零時的運動)可以對電壓損耗產生重大影響。證明了分子性質和宏觀器件性質之間的直接關係。研究結果為進一步開發和改進新型有機材料提供了重要信息。

光學吸收光譜的低能量邊緣對於太陽能電池的性能至關重要,但是對於具有許多影響因素的有機太陽能電池而言,人們對此尚不了解。在本研究中,研究了分子共混體系中吸收帶的微觀起源及其在有機太陽能電池中的作用。重點是吸收特性的溫度依賴性,這是在考慮分子振動的情況下進行理論研究的。模擬與實驗測量的吸收光譜非常匹配,過程中也有許多重要發現。

作者發現,由電子-聲子相互作用介導的零點振動會引起相當大的吸收帶寬。這導致釋放了一部分能量,該能量未被使用,因此降低了開路電壓。現在可以從電子和振動分子參數預測這些電壓損失。不尋常的是,即使在室溫下,這種作用也很強,並且會大大降低有機太陽能電池的效率。哪些方法可以減少這些振動引起的電壓 作者正在討論對於大量系統和不同異質結幾何形狀可能應用的損耗。

論文標題為《Molecular vibrations reduce the maximum achievable photovoltage in organic solar cells》。

相關焦點

  • 鄒應萍:降低A-DA-D-A受體有機太陽能電池中的電壓損失
    如何從分子設計的角度打破大電壓損耗的束縛? 什麼類型的分子結構可以導致低電壓損耗的新一代材料?中南大學鄒應萍教授、林克平大學的高峰教授、中國科學院化學研究所的李永舫教授等人從這一角度出發,討論了開路電壓、CT態特性和分子特性之間的關係,並對降低高性能NFA OSCs中的電壓損耗的設計策略提出了他們的理解。
  • 【前沿技術】用發光受體分子提高非富勒烯有機太陽能電池效率
    獲取更多信息,請關注我們 德國埃爾朗根-紐倫堡大學的研究人員分析了能級偏移對非富勒烯有機太陽能電池效率的影響,指出提高效率的關鍵是研發可發光的受體分子。有機太陽能電池具有一定柔性,能大面積印刷,可為載具、建築分布式供電,功率轉換效率已達到16%,但與無機太陽能電池仍有一定差距。這種電池利用供體-受體界面的能級偏移產生載流子,很小的能級偏移就能增加開路電壓,但相關原理仍不清楚。研究人員以非富勒烯為受體,苯並二噻吩與喹喔啉衍生物為供體,構建了4種不同能級偏移(0~300 meV)的有機太陽能電池。
  • 阻止熱量散發的振動可以提高下一代太陽能電池的效率
    ORNL的麥可·曼利說:「我們證明,可以通過改變光伏材料中氫原子的質量來控制熱傳輸和載流子冷卻時間。」 「這種延長電荷載流子壽命的途徑為在新型熱載流子太陽能電池中實現創紀錄的太陽能轉換效率提供了新的策略。」 UT的Mahshid Ahmadi指出:「調整有機分子的動力學特性可以控制對有機金屬鈣鈦礦中導熱性很重要的聲子。」
  • 可用於汽車的有機太陽能電池
    據外媒報導,研究人員發現,在太陽能電池中,可利用有機分子混合物,吸收陽光並將其轉換成電能。此外,這種電池還能應用於汽車車身等曲面。這一發現挑戰傳統觀念,有助於早日實現太陽能電池的商業化應用。本文引用地址:http://www.eepw.com.cn/article/201910/406373.htm在基本的有機太陽能電池中,有機半導體薄膜夾在兩個電極之間。該薄膜將有機半導體層中產生的電荷提取到外部電路中。長期以來,人們一直認為,電極表面需要達到100%導電,才能最大限度地提取電荷。
  • 未來的太陽能電池:提高有機太陽能電池效率的系統
    自2019年9月以來,布拉貝克教授的工作組保持了12.6%的有機光伏模塊效率的世界紀錄。在紐倫堡Energie Campus(EnCN)開發的多電池模塊的表面積為26cm 。Brabec教授說:「如果我們在實驗室中能達到20%以上,那麼在實踐中我們可能會達到15%,並成為矽太陽能電池的真正競爭者。」
  • 有機薄膜太陽能電池的結構與製作技術
    1前言 本文引用地址:http://www.eepw.com.cn/article/177574.htm作為典型可再生能源的太陽能光伏發電,近年來,面向各個產業及至人民的生活、住宅,正急速的推廣應用。但目前的單晶矽太陽電池,難於大幅度降低成本。
  • 降低有機太陽能電池非輻射複合損失研究獲進展
    近日,中國科學院國家納米科學中心研究員周二軍與北京航空航天大學教授孫豔明、東華大學教授馬在飛合作,在降低有機太陽能電池的非輻射複合損失研究中取得進展。相關研究成果發表在Advanced Materials上。
  • 「前沿技術」用發光受體分子提高非富勒烯有機太陽能電池效率
    ---------- 獲取更多信息,請關注我們----------德國埃爾朗根-紐倫堡大學的研究人員分析了能級偏移對非富勒烯有機太陽能電池效率的影響,指出提高效率的關鍵是研發可發光的受體分子。有機太陽能電池具有一定柔性,能大面積印刷,可為載具、建築分布式供電,功率轉換效率已達到16%,但與無機太陽能電池仍有一定差距。這種電池利用供體-受體界面的能級偏移產生載流子,很小的能級偏移就能增加開路電壓,但相關原理仍不清楚。研究人員以非富勒烯為受體,苯並二噻吩與喹喔啉衍生物為供體,構建了4種不同能級偏移(0~300 meV)的有機太陽能電池。
  • 國家納米中心等在降低有機太陽能電池非輻射複合損失研究中獲進展
    近日,中國科學院國家納米科學中心研究員周二軍與北京航空航天大學教授孫豔明、東華大學教授馬在飛合作,在降低有機太陽能電池的非輻射複合損失研究中取得進展。相關研究成果發表在Advanced Materials上。  近十年,溶液加工製備本體異質結有機太陽能電池(OSCs)發展迅速,能量轉換效率(PCE)已超18%,但是仍落後於矽基和鈣鈦礦太陽能電池。
  • 全小分子有機太陽能電池研究取得進展
    圖片來源:網際網路有機太陽能電池作為新一代太陽能電池技術近年來受到廣泛關注。相比較於傳統的矽基太陽能電池,有機太陽能電池具有成本低、柔性、可大面積印刷製備等優點。目前製備高效有機太陽能電池的主流策略是使用聚合物給體和非富勒烯受體材料構建活性層。但聚合物材料在製備過程中通常存在分子量和分散度難以精確控制、難提純、材料的批次穩定性差等問題,相應製備的有機太陽能電池效率的重複性降低,不利於大規模商業化應用。
  • 通過阻止振動散熱來提高新一代太陽能電池的效率
    「我們證明了熱輸運和荷載冷卻時間可以通過改變光伏材料中氫原子的質量來控制,」ORNL的Michael Manley說。「這條延長載流子壽命的路線為新型熱載流子太陽能電池實現創紀錄的太陽能到電能轉換效率提供了新的策略。」 UT的Mahshid Ahmadi指出:「調整有機分子動力學可以控制對有機金屬鈣鈦礦熱導率很重要的聲子。
  • 三元有機太陽能電池:效率17.22%
    近年來,三元策略在提高有機太陽能電池性能方面已展露出很大的潛力,成為有機光伏領域的研究熱點。張福俊教授課題組長期專注於三元有機光伏器件物理方面的研究,提出了研究三元體系中激子和載流子動力學的新方法、新手段,以及理解合金模型的微觀機制。
  • 金屬有機框架塗層降低了發電所需電壓
    烏普薩拉大學的研究人員研究發現,氫氣和甲醇可以利用陽光以更可持續的方式生產。在這項研究中,研究人員開發出了一種新的半導體塗層材料,在將陽光與電力直接結合的過程中生產燃料。這項研究發表在《Nature Communications》上。如今,氫氣和甲醇主要由石油或天然氣等化石資源生產。
  • 穩定、高效的三元有機太陽能電池
    北極星太陽能光伏網訊:相比傳統基於無機材料的光伏器件,有機太陽能電池的優勢明顯,例如成本低、質量輕、易加工、可製成柔性器件等等。儘管問世初期有機太陽能電池的能量轉換效率(PCE)比較低,但是經過近年來的發展,特別是非富勒烯受體(NFA)材料的研究進展,有機光伏器件的性能節節攀升。例如,中科院化學所近期就報導了效率接近18%的單結有機光伏電池(Adv.
  • 新型受體製備低電壓損耗高效三元有機太陽能電池
    在過去的十年裡,本體異質結(BHJ)有機太陽能電池(OSCs)取得了快速的發展。單結器件的光電轉換效率(PCE)超過16%,疊層器件的光電轉換效率(PCE)超過17%。在三元器件中,選擇三個具有互補吸收和適當能級的活性層組分對於獲得良好的器件性能至關重要。 此外,光生載流子的能量損耗也是決定光伏性能的重要因素。 為了降低三元器件的損耗,應適當調整吸光活性材料的LUMO和HOMO水平。
  • 電子科大陶斯祿AFM:基於分子間氫鍵作用優化三元有機太陽能電池
    【研究成果】電子科技大學陶斯祿教授課題組通過研究三元有機太陽能電池體系中各組分分子間的相互作用,證實分子間的氫鍵作用不僅可以提升器件的效率和穩定性,同時可以改善器件對薄膜厚度及組分比例的敏感度。由形成氫鍵前後分子的ESP分析得知,氫鍵提高了富勒烯分子的靜電勢,進而促進給受體分子間的電荷解離過程。
  • 有機太陽能電池光電轉化率達12.7%
    >  近日,南開大學陳永勝教授團隊在有機太陽能電池領域研究中取得突破性進展。他們利用寡聚物材料的互補吸光策略構建了一種具有寬光譜吸收特性的疊層有機太陽能電池器件,實現了12.7%的光電轉化效率,這是目前文獻報導的有機/高分子太陽能電池光電轉化效率的最高紀錄。近日,該成果論文發表在英國《自然·光子學》雜誌上。  有機太陽能電池以具有光敏性質的有機(包括高分子)材料作為半導體材料,通過光伏效應產生電壓,進而形成電流, 實現太陽能發電。
  • 陳立桅課題組JACS:有機和鈣鈦礦太陽能電池中的界面偶極
    對於有機太陽能電池而言,開路電壓和短路電流相互折衷,是早期限制器件性能提升的主要瓶頸之一。;(b)反式結構有機太陽能電池和或傳統結構鈣鈦礦太陽能電池有機太陽能電池根據器件極性可劃分為傳統結構(圖3a)和反式結構(圖3b),而由於報導的先後順序不同,鈣鈦礦太陽能電池對於傳統結構(圖3b)和反式結構(圖3a)的定義正好相反。
  • 華威大學研究人員開發有機太陽能電池 可用於汽車曲面車身
    ,可利用有機分子混合物,吸收陽光並將其轉換成電能。此外,這種電池還能應用於汽車車身等曲面。這一發現挑戰傳統觀念,有助於早日實現太陽能電池的商業化應用。在基本的有機太陽能電池中,有機半導體薄膜夾在兩個電極之間。該薄膜將有機半導體層中產生的電荷提取到外部電路中。長期以來,人們一直認為,電極表面需要達到100%導電,才能最大限度地提取電荷。
  • 研究人員探討有機太陽能電池板的發展前景
    阿爾莫最近收購了德國Opvius公司,後者專門設計可用於建築裝飾的塑料太陽能電池板。有機光伏可以只有幾毫米厚,可以放在塑料聚酯膜上。阿爾莫公司推出可以安裝在窗玻璃內的薄半透明有機光伏,這樣辦公室的窗戶就可以濾掉一些陽光,同時將其轉化為電能。 塑料太陽能電池板是一項新技術,歐洲公司將其作為一種替代方案來推動。