關於正餘弦定理的推導

2020-12-05 另一座數學城堡

關於正餘弦定理的推導

數學城堡

今天數學城堡帶著大家來一起推導一下正餘弦定理,餘弦定理很簡單一步帶過只需要利用向量,最後兩邊平方即可,詳見電子稿證明

下面我們主要來證明正弦定理

如果這個三角形是直角三角形,正弦定理很明顯成立,下面證明其他情況也符合正弦定理

我給大家一個 圓O ,這個圓呢有一個弦 AB,這個 AB對的圓周角呢是角ACB ,一條弦對應的兩類圓周角如圖所示,角1+角2=180度,其正弦值相等!

不妨設角ACB為銳角,我們都知道,無論這個C在這個圓上怎麼動,它的大小是不變的。那我們將這個 C運動到 AC是直徑的情況。好,重點來了,這個時候的三角形ABC 是以B為直角的直角三角形,故有:

sinC= AB/AC,即AB/sinC=AC

那我們得到了,只要我們有一個定圓,它的任意一個弦比上它對應的圓周角的正弦值為圓的直徑!又有任意一個三角形都有一個外接圓,所以正弦定理是成立的,關於為什麼任意一個三角形都有一個外接圓,這個的證明留給讀者,也十分簡單.

附上證明過程的電子版

相關焦點

  • 3分鐘,搞懂餘弦定理
    餘弦定理是什麼?餘弦定理可以理解為是勾股定理在一般三角形中的擴展。勾股定理解決直角三角形的邊關係問題,餘弦定理則解決所有三角形的邊角關係問題。所以餘弦定理公式也是在勾股定理的基礎上,增加了角度要素而成。
  • 關於兩角和與差的正餘弦公式推導
    既然我們要推導兩角和與差的正餘弦公式,就要想想哪裡出現了正餘弦。我們需要先學會推導另一個公式,向量數量積的坐標表示。詳細推導過程如下,我們取x軸與y軸正向的單位向量數量積的坐標表示為了只保留餘弦,我們想辦法讓兩個向量的模長簡化
  • 解三角形除了正餘弦定理,還可以用射影定理
    第一問很自然先想到正弦定理,發現可以接著利用和角公式化簡,得到sinB=sin(A-B),這個地方要注意角的範圍(0,π),B與(A-B)兩角關係一是相等,二是互補,其中一種情況不符合題意捨去。方法2利用餘弦定理稍顯複雜,主要原因是利用餘弦定理直接看不出方向,能想到用餘弦二倍角公式還是不容易的,而且要得到cosA=cos2B這個等量關係,推導過程計算是有點麻煩的,其實也就是有從結論入手反推,總之,這條路肯定行得通,但是不建議大家採用從射影定理入手,額~~~慢慢算吧做題就像回家
  • 餘弦定理的多種證明方法
    大家好,今天我們來看看餘弦定理的證明方法,有好多種,我試試看今天能寫多少種?餘弦定理:指三角形任何一邊的平方等於其他兩邊平方的和減去這兩邊與他們夾角的餘弦的積的兩倍。即在△ABC中,已知AB=c,AC=b,BC=a,則有
  • 教學|正餘弦定理應用之解決有關三角形計算的問題·教案·課件
    研討素材一教學目標一、知識與技能1.能夠運用正弦定理、餘弦定理等知識和方法進一步解決有關三角形的問題;2.掌握三角形的面積公式的簡單推導和應用二、過程與方法1.本節課補充了三角形新的面積公式,巧妙設疑,引導學生證明,同時總結出該公式的特點,循序漸進地具體運用於相關的題型;2.本節課的證明題體現了前面所學知識的生動運用,教師要放手讓學生摸索,使學生在具體的論證中靈活把握正弦定理和餘弦定理的特點,能不拘一格,一題多解
  • 淺談「兩角差的餘弦公式」之推導
    「兩角差的餘弦公式」在推導過程中具有重要的教育價值,蘊涵著換一個角度看問題的轉換思想,是數學家創造發明的法寶,也是我們進行再發現、再創造活動的探索方式。本文針對 「兩角差的餘弦公式的推導」章節進行學習,分析並推導兩角差的餘弦公式,實踐檢驗。筆者在近年來的各省數學高考試卷中發現,經常會出現考查數學教材中相關公式或定理的證明試題,比如證明兩角和的餘弦公式及餘弦定理等等。
  • 餘弦定理及其應用的深入剖析
    1.對餘弦定理的四點說明(1)勾股定理指出了直角三角形中三邊平方之間的關係,餘弦定理則指出了一般三角形中三邊平方之間的關係,餘弦定理是勾股定理的推廣,勾股定理是餘弦定理的特例.2.對餘弦定理推論的理解餘弦定理的推論是餘弦定理的第二種形式,適用於已知三角形三邊來確定三角形的角的問題.用餘弦定理的推論還可以根據角的餘弦值的符號來判斷三角形中的角是銳角還是鈍角.探究點1 已知兩邊及一角解三角形
  • 兩角和與差的餘弦公式的五種推導方法之對比(高中數學)
    兩角和與差的餘弦公式的五種推導方法之對比兩角和與差的餘弦公式是三角函數恆等變換的基礎
  • 乾貨|解三角形之餘弦定理證明
    1.對餘弦定理的四點說明(1)勾股定理指出了直角三角形中三邊平方之間的關係,餘弦定理則指出了一般三角形中三邊平方之間的關係,餘弦定理是勾股定理的推廣,勾股定理是餘弦定理的特例2.對餘弦定理推論的理解餘弦定理的推論是餘弦定理的第二種形式,適用於已知三角形三邊來確定三角形的角的問題.用餘弦定理的推論還可以根據角的餘弦值的符號來判斷三角形中的角是銳角還是鈍角.探究點1 已知兩邊及一角解三角形
  • 餘弦定理知識點總結及典型例題
    餘弦定理和正弦定理是高中階段解三角形的理論基礎,上期分享了正弦定理的基礎知識和常見題型,本期小編和大家分享一下餘弦定理的基礎知識和基本題型及常用解題技巧。一、基礎知識二、典型例題題型一、餘弦定理的基本概念總結:(1)在解三角形的時候,我們什麼時候選擇正弦定理什麼時候選擇餘弦定理呢?
  • 正弦定理、餘弦定理
    正弦定理(Law of Sines)在一個三角形中,各邊和它所對角的正弦的比值相等。餘弦定理(Law of Cosines)三角形中任何一邊的平方 = 其它兩邊的平方和減去這兩邊與它們的夾角的餘弦的積的兩倍。
  • 原來高中的餘弦定理可以這樣學,真是通俗易懂啊
    好了,開始進入今天的主題——餘弦定理。而餘弦定理一向是高考重點考查的內容,所有作為高中生在高考總複習中,一定要重視這一塊的複習我們已經學習了正弦定理,它講的是三角形的邊與角的等量關係。現在,開始你的推導,寫在草稿紙上,看看和下面的結論是否一樣:那麼現在問題又來了:除了作直角三角形來解決,你還能有其他的方法來解決嗎?
  • 2019高考數學:解三角形——正弦定理和餘弦定理的解題技巧和模型
    解三角形——正弦定理和餘弦定理的解題技巧和模型正弦定理、餘弦定理的每一個等式中都包含三角形的四個元素(三角形有三個角和三條邊,三角形的邊與角稱為三角形的元素),如果其中三個元素是已知的(至少要有一個元素是邊),那麼這個三角形一定可解.關於斜三角形的解法,根據已知條件及適用的定理,
  • 衝刺2018年高考數學,典型例題分析23:餘弦定理和正弦定理
    考點分析:餘弦定理;正弦定理.題幹分析:(Ⅰ) 在△APC中,由余弦定理得AP2﹣4AP+4=0,解得AP=2,可得△APC是等邊三角形,即可得解.(Ⅱ) 法1:由已知可求∠APB=120°.利用三角形面積公式可求PB=3.進而利用餘弦定理可求AB,在△APB中,由正弦定理可求sin∠BAP的值.
  • 餘弦定理的定義公式及證明方法
    餘弦定理的定義公式及證明方法很多還沒有學到餘弦定理的同學們不知道什麼是餘弦定理,但是餘弦定理在很多題目的解答上都很簡便,有些題目如果同學們用餘弦定理解答會節約很多時間,今天有途網小編就來給大家講解一下餘弦定理。三角形任何一邊的平方等於其他兩邊平方的和減去這兩邊與他們夾角的餘弦的積的兩倍。
  • 一般三角形中的正弦定理和餘弦定理
    一般三角形的正弦定理在一般形狀的三角形ABC中的其中一個頂點向對邊作垂線,可形成兩個直角三角形,在這兩個三角形中,根據直角三角形中斜邊與直角邊的關係,可得這就是一般三角形中的正弦定理,它表示了邊和對角之間的比例關係。
  • 教學研討|正弦、餘弦定理應用之邊角轉換·教案·課件
    研討素材一一、教學目標(1) 知識與技能: 了解正餘弦定理的內容,能綜合利用正餘弦定理解決三角形形狀的判斷及求邊、角等問題。(2) 過程與方法: 學生分析、解答問題,學會綜合運用正餘弦定理、三角函數公式及有關性質求解三角形問題。(3) 情感、態度與價值觀 :通過正餘弦定理邊角互換時所發揮的橋梁作用來反映事物之間的內在聯繫。
  • 誰是第一個發現勾股定理的人? 勾股定理是怎樣推導出來的?
    誰是第一個發現勾股定理的人? 勾股定理是怎樣推導出來的?時間:2016-04-13 20:13   來源:川北在線整理   責任編輯:沫朵 川北在線核心提示:原標題:誰是第一個發現勾股定理的人? 勾股定理是怎樣推導出來的?
  • 正弦定理和餘弦定理的證明過程匯總和適用的條件
    正弦定理和餘弦定理是解三角形的工具,它們使用的範圍不局限於直角三角形當中,可以在任意的三角形中使用。餘弦定理的證明過程餘弦定理也適用於任意的三角形。餘弦定理的證明過程第一個就是向量的證明方法,簡單方便、易於理解。在用坐標證明的過程,選擇其中三角形一頂點坐標為零點,方便計算。
  • 餘弦定理的證明方法大全
    餘弦定理定理證明