科普:什麼是拓撲?什麼是相變?

2020-12-05 騰訊網

【什麼是拓撲?什麼是相變?】看不懂今年的#諾貝爾獎# 物理學獎?為什麼這些字每個字都知道,合起來就不認識了?先別急,諾獎官方推特做了一個簡單的介紹。

要想知道什麼是「物質的拓撲相變和拓撲相」。你得先知道什麼是拓撲、什麼是相變。

[拓撲]:拓撲學是數學的一個分支。它的主要研究內容,是幾何形狀在連續形變中所不改變的性質。例如,一個有把手的茶壺連續變化成輪胎,而不是一個球。(見圖1)

圖1

[相變]:相變就是物質在外界條件連續變化時,從一種「相」突然變成另一種「相」的過程,比如冰融化成水。(見圖2)

圖2

日常生活中最常見的「相」是氣態、液態和固態。而在一些極端的條件下,比如極高的溫度或者極低的溫度,會出現很多更為奇異的狀態。(見圖3)

圖3

我們所看到的相變,是分子在微觀層面上一起作出改變的結果。比如宏觀上,冰融化成水,再蒸發成水蒸氣的過程中:在微觀上,分子和分子先是像方陣兵一樣十分整齊地排列著,在宏觀上就表現出冰的狀態。當溫度升高,士兵們在附近自由活動,不再整齊地保持隊列,但依然挨在一起,再宏觀上就呈現了水的形態;當溫度再升高,士兵們完全自由運動,就呈現了水蒸氣的狀態。

而戴維·索利斯和麥可·科斯特利茨還提出了BKT相變(Berezinskii–Kosterlitz–Thouless transition),它在微觀上是這樣的:一群士兵分別圍繞幾個長官轉圈。為了一直轉下去,有一群順時針的士兵,就要有一群逆時針轉的。一開始,每一個逆時針的長官都和一個順時針的長官配對,每一對順/逆時針的長官所帶領的士兵都只會互相補充給彼此;後來每一對長官都分開了,隨意移動,他們率領的士兵也不再只給彼此,而是送給所有其他人,這樣拓撲結構發生了改變,從而產生了相變。不過,與水不同,BKT相變描述的是二維的物質。(見圖2)

圖2

相關焦點

  • 用中學生能看懂的語言講2016諾貝爾物理獎:拓撲相變與拓撲相
    首先,什麼是相變?眾所周知,純水可以有冰、水、水蒸氣三種狀態,也就是固體液體氣體三種相。融化沸騰結霜等都是相變。值得注意的是,相變意味著存在不連續的躍變。比如說固相和液相之間並沒有中間狀態。除了固液氣相,物質還可能有很多其他複雜的相,呈現出不尋常的特徵,比如超導和超流,後面會解釋。總而言之,不同的相是指同一個物質內的原子們,有不同的組織結構,對應於不同的物態。相與相之間的變化,是躍變的(存在不連續的物理量),而不是漸變的 (比如將一塊鐵的溫度慢慢升高)。其次,什麼是拓撲?
  • 「拓撲相變」與「超級材料」的軍事應用前景
    作者:賈珍珍石海明(國防科技大學)製作:光明網軍事科技前沿出品:科普中國>2016年的諾貝爾物理學獎授予了三位美國科學家——戴維·索利斯、鄧肯·霍爾丹和麥可·科斯特利茨,以表彰他們在拓撲相變和物質的拓撲相方面的發現。
  • 拓撲相變風頭蓋過引力波 有望讓手機不再發燙
    花絮  拓撲是什麼?  以「數學之眼」看物理  開啟「未知世界的領域」  什麼成就,竟然蓋過了今年風頭正旺的國際物理界大頭條——引力波探測,一舉拿下今年諾貝爾物理學獎?沒錯,正是看似冷門卻並不寂寞的拓撲相變領域的研究。  拓撲學是數學的一個分支。
  • 材料人科普 諾獎中的拓撲絕緣體到底是什麼鬼?
    Michael Kosterlitz)共同獲得了諾貝爾物理學獎,以表彰他們在理論上發現了物質的拓撲相變和拓撲相。本文就是對於拓撲絕緣體領域的小科普,不恰當之處,請大家指正。:拓撲絕緣體是helical state,對稱破缺後下能回到普通絕緣體,而量子霍爾效應是chiral 態,即使沒有長程糾纏也變不回變為直積態。
  • 2016年諾貝爾物理學獎揭曉 拓撲相變:揭開科技新篇章
    圖說:戴維·索利斯、鄧肯·霍爾丹、麥可·科斯特利茨。今年的諾貝爾物理學獎獎金,一半授予美國華盛頓大學的大衛·蘇奧雷斯,另一半授予美國普林斯頓大學的鄧肯·霍爾丹以及布朗大學的麥可·科斯特利茲,以獎勵他們「在拓撲相變以及拓撲材料方面的理論發現」。復旦大學物理系教授、博士生導師施鬱在解讀諾貝爾物理獎時認為,這一研究成果對於材料學、信息科學技術研究乃至拓撲量子計算具有劃時代的意義,拓撲材料的理論發現為後來拓撲材料的出現奠定了基礎,揭開了人類科技的新篇章。
  • 物理學諾獎揭曉後拓撲相變火:開啟了一個未知世界
    拓撲學是數學的一個分支,它主要研究的是幾何圖形或空間在連續改變形狀後還能保持不變的性質。據諾貝爾獎評選委員會介紹,三名獲獎者將拓撲概念應用於物理研究,這是他們取得成就的關鍵。  上世紀70年代,索利斯和科斯特利茨用拓撲理論推翻了當時超導性和超流體不能在薄層中存在的理論,並證明了超導性可在低溫狀態存在,解釋了其在溫度升高時消失的機制與相變。
  • 極端光學研究團隊發現非厄米光子拓撲絕緣體拓撲相變規律
    北京大學物理學院、納光電子前沿科學中心、人工微結構和介觀物理國家重點實驗室「極端光學團隊」胡小永教授和龔旗煌院士等在非厄米拓撲光子學研究中取得重要進展:發現在二維PT對稱構型的耦合諧振環陣列光子拓撲絕緣體中存在拓撲相變,並且揭示了產生拓撲相變的內在條件:由耦合強度與增益損耗量共同決定的解析關係。
  • 物理系《科學》發文 揭示拓撲誘導的磁性量子相變
    物理系《科學》發文 揭示拓撲誘導的磁性量子相變為可能的器件應用提供了一個理想的平臺        清華新聞網3月29日電 清華大學物理系的研究人員與合作者在拓撲絕緣體的研究中取得重要進展,發現了磁性摻雜拓撲絕緣體中由能帶拓撲量子相變而導致的磁性量子相變
  • 物理學院廖志敏課題組在拓撲超導相變研究中取得進展
    北京大學物理學院廖志敏教授課題組與荷蘭屯特大學李川助理教授、南方科技大學俞大鵬院士等合作,在《物理評論快報》上發表題為「Topological Transition of Superconductivity in Dirac Semimetal Nanowire Josephson Junctions」的研究論文【Physical Review Letters 126, 027001 (2021)】,該工作實現了狄拉克半金屬納米線約瑟夫森結中拓撲超導相變的柵壓調控
  • 2016年諾貝爾物理學獎揭曉 拓撲相變:開啟一個未知世界
    ,以及在拓撲相變方面作出的理論貢獻。   復旦大學物理學系教授陳鋼介紹,上世紀70年代,索利斯和科斯特利茨合作,在研究二維材料有限溫度下的超流體相變時,發現了「KT相變」(以兩人姓氏的首字母命名)。上世紀80年代初,索利斯等人用拓撲學原理描述整數量子霍爾效應的TKNN不變量。   霍爾丹之所以被授予諾獎,也與「拓撲」有關。
  • 物理所《PNAS》:實現極性拓撲結構相變的原子尺度表徵與調控
    近年來,科學家先後在理論和實驗上發現了鐵電材料中可以形成尺寸低至幾個納米的極性拓撲結構,如通量閉合疇、渦旋疇和斯格明子等。極性拓撲疇結構具有拓撲保護性、尺寸小等優勢,這引起探索新一代非易失性超高密度信息存儲器件的興趣。實際器件操作大多是基於外場對結構單元極化態和拓撲相變的調控,研究單個鐵電疇結構的極化分布以及外場操控下拓撲相變動力學過程是器件應用的基礎。
  • 拓撲絕緣體究竟是什麼東西?為什麼這麼受科學家青睞?
    Michael Kosterlitz)共同獲得了諾貝爾物理學獎,以表彰他們在理論上發現了物質的拓撲相變和拓撲相。那麼拓撲絕緣體究竟是什麼呢?我們一起來科普一下吧。什麼是拓撲絕緣體?按照導電性質的不同,材料可分為「導體」和「絕緣體」兩大類;而更進一步,根據電子態的拓撲性質的不同,「絕緣體」和「導體」還可以進行更細緻的劃分。拓撲絕緣體就是根據這樣的新標準而劃分的區別於其他普通絕緣體的一類絕緣體。
  • 《自然—材料》:拓撲相變用於提高熱電優值—新聞—科學網
  • 原位電鏡技術實現極性拓撲相變的原子尺度表徵與調控
    實際器件操作大多是基於外場對結構單元極化態和拓撲相變的調控,研究單個鐵電疇結構的極化分布以及外場操控下拓撲相變動力學過程是器件應用的基礎。然而,極性拓撲結構的形成是體系中靜電能、彈性能和梯度能之間在微小差別內相互競爭平衡的結果,如何實現局域外場對微區結構的精確調控以及相變過程的精細表徵是一個非常大的挑戰。
  • 物理系張廣銘教授課題組在非阿貝爾量子拓撲物態相變研究方面取得...
    物理系張廣銘教授課題組在非阿貝爾量子拓撲物態相變研究方面取得重要進展清華新聞網4月7日電 近期,清華大學物理系張廣銘教授課題組在非阿貝爾量子拓撲物態相變理論方面取得重要進展,在2020年4月美國物理學會出版的國際權威期刊《物理評論快報》(Physical Review Letters)上,以「非阿貝爾拓撲物態相變的張量網絡方法」(Tensor
  • ...報導量子中心何慶林研究員等反鐵磁序誘導拓撲相變的研究成果
    通過在拓撲絕緣體中引入、操作鐵磁有序能產生許多新穎的物理現象,如k空間的非平庸拓撲相變,因此凝聚態物理領域對磁性拓撲絕緣體的研究是一個重要的研究課題。在磁性拓撲絕緣體中,由於時間反演對稱性的破缺,拓撲絕緣體的表面態將會打開一個交換帶隙,產生一定的貝裡曲率,因此系統具有內廩的反常霍爾效應。
  • 北大-廖志敏及其合作者︱在拓撲超導相變研究中取得進展
    近日,北京大學物理學院廖志敏教授課題組與荷蘭屯特大學李川助理教授、南方科技大學俞大鵬院士等合作,實現了狄拉克半金屬納米線約瑟夫森結中拓撲超導相變的柵壓調控
  • 清華物理系張廣銘教授課題組在量子拓撲相變理論方面取得重要進展
    清華物理系張廣銘教授課題組在量子拓撲相變理論方面取得重要進展清華新聞網5月7日電 4月30日,清華大學物理系教授張廣銘課題組近期在量子拓撲相變理論方面取得重要進展,在美國物理學會出版的國際權威期刊《物理評論快報》(Physical Review Letters)上,以「自對偶拓撲張量網絡態中演生出無能隙庫侖氣體態
  • 進展 | 原位電鏡技術實現極性拓撲結構相變的原子尺度表徵與調控
    近些年來先後在理論和實驗上發現了鐵電材料中可以形成尺寸低至幾個納米的極性拓撲結構,如通量閉合疇、渦旋疇和斯格明子等,由於極性拓撲疇結構具有拓撲保護性,而且尺寸小,引起了探索新一代非易失性超高密度信息存儲器件的興趣。
  • 進展|原位電鏡技術實現極性拓撲結構相變的原子尺度表徵與調控
    近些年來先後在理論和實驗上發現了鐵電材料中可以形成尺寸低至幾個納米的極性拓撲結構,如通量閉合疇、渦旋疇和斯格明子等,由於極性拓撲疇結構具有拓撲保護性,而且尺寸小,引起了探索新一代非易失性超高密度信息存儲器件的興趣。