2016年5月11日訊/生物谷BIOON/--近日,慕尼黑亥姆霍茲中心的科學家們發現一項新內容,當人們飢餓時在人體分子水平上會發生什麼。德國糖尿病研究中心(DZD)和德國癌症研究中心(DKFZ)的研究人員表明去除食物中產生的某些蛋白質可以調節肝臟的新陳代謝。研究結果發表在《EMBO Molecular Medicine》雜誌上。
越來越多的人變得肥胖成為現代社會的壓力問題。特別是由此產生的代謝疾病,如2型糖尿病和隨之而來的副作用會對健康造成嚴重威脅。減少熱量攝入,如間歇性禁食可以幫助新陳代謝,但為什麼會這樣呢?
這是Stephan Herzig教授和合作者想要回答的問題。「一旦我們理解禁食如何影響新陳代謝後,我們就會嘗試這種治療方法。」Herzig說。
壓力分子會減少肝臟中脂肪酸的吸收。
在當前的研究中,科學家們尋找由于禁食引起的肝細胞基因活動的差異。在記錄數組的幫助下,他們能夠表明,蛋白質基因GADD45β因為飲食的不同而不同:越感到飢餓,細胞就會產出越多的分子,它的名字是「生長抑制和DNA損傷誘導基因」。就像名字說的那樣,分子曾與損傷的修復基因信息和細胞周期有關,而不是代謝生物學相關。
後續的仿真測試表明,GADD45β負責控制肝臟脂肪酸的吸收。小鼠因缺乏相應的基因而更容易患脂肪肝。然而在蛋白質恢復時,肝臟的脂肪含量會變得正常,糖代謝也會改善。科學家們能夠確認該結果也在人類身上發生:GADD45β含量偏低是伴隨著肝臟中脂肪堆積的增加和血糖水平的升高而發生的。
「禁食造成的肝細胞壓力似乎刺激了GADD45β的生產,然後調整新陳代謝致食物攝入量較低。」Herzig總結道。研究人員想使用新的發現對脂肪和糖代謝進行治療幹預,以便食物不足時通過治療可產生積極的效果。(生物谷Bioon.com)
本文系生物谷原創編譯整理,歡迎轉載!點擊 獲取授權 。更多資訊請下載生物谷APP.
Fasting‐induced liver GADD45β restrains hepatic fatty acid uptake and improves metabolic health
Jessica Fuhrmeister, Annika Zota, Tjeerd P Sijmonsma, Oksana Seibert, Şahika Cıngır, Kathrin Schmidt, Nicola Vallon, Roldan M de Guia, Katharina Niopek, Mauricio Berriel Diaz, Adriano Maida, Matthias Blüher, Jürgen G Okun, Stephan Herzig, View ORCID ProfileAdam J Rose
Recent studies have demonstrated that repeated short‐term nutrient withdrawal (i.e. fasting) has pleiotropic actions to promote organismal health and longevity. Despite this, the molecular physiological mechanisms by which fasting is protective against metabolic disease are largely unknown. Here, we show that, metabolic control, particularly systemic and liver lipid metabolism, is aberrantly regulated in the fasted state in mouse models of metabolic dysfunction. Liver transcript assays between lean/healthy and obese/diabetic mice in fasted and fed states uncovered 「growth arrest and DNA damage‐inducible」 GADD45β as a dysregulated gene transcript during fasting in several models of metabolic dysfunction including ageing, obesity/pre‐diabetes and type 2 diabetes, in both mice and humans. Using whole‐body knockout mice as well as liver/hepatocyte‐specific gain‐ and loss‐of‐function strategies, we revealed a role for liver GADD45β in the coordination of liver fatty acid uptake, through cytoplasmic retention of FABP1, ultimately impacting obesity‐driven hyperglycaemia. In summary, fasting stress‐induced GADD45β represents a liver‐specific molecular event promoting adaptive metabolic function.