三個世紀過去了,每一次試圖證明費馬大定理的嘗試都無果而終。一代又一代的數學家已經在這個問題上耗盡了信心。沒有多少人能相信,自己能比歷史上那些最聰明的大腦加在一起還要聰明,以至於能將大定理堅硬的外殼鑿出裂縫,最終摘取裡面的碩果。
作為當代最傑出的數學家之一的懷爾斯也非常清楚擺在他面前的困境。大定理是一座聳立在人間的奇峰,讓所有敢於攀登它的人都陡然生畏。只是,他對大定理有極其特殊的感情,那是他從10歲起就有的一個夢——一個值得他為此付出終生的追求。
1986年,英國數學家安德魯·懷爾斯聽到裡貝特證明弗雷命題後,感到攻克費馬大定理到了最後攻關階段,並且這剛好是他的研究領域,他開始放棄所有其它活動,精心梳理有關領域的基本理論,為此準備了一年半時間把橢圓曲線與模形式通過伽羅瓦表示方法「排隊」。接下來的要將兩種「排隊」序列對應配對,這一步他兩年無進展。此時他讀博時學的巖澤理論一度取得實效,到1991年他之前的導師科茨告訴他有位叫弗萊切的學生用蘇聯數學家科利瓦金的方法研究橢圓曲線,這一方法使其工作有重大進展。
1993年6月在劍橋牛頓學院要舉行一個名為「L函數和算術」的學術會議,組織者之一正是懷爾斯的博士導師科茨,於是在1993年6月21日到23日懷爾斯被特許在該學術會上以「模形式、橢圓曲線與伽羅瓦表示」為題,分三次作了演講。聽完演講人們意識到谷山—志村猜想已經證明。由此把法爾廷斯證明的莫德爾猜想、肯·裡貝特證明的弗雷命題和懷爾斯證明的谷山—志村猜想聯合起來就可說明費馬大定理成立。其實這三個猜想每一個都非常困難,問題是懷爾斯的最後證明,他變為完成費馬大定理證明的最後一棒。
1993年6月23日從劍橋牛頓學院傳出費馬大定理被證明之後,世界媒體鋪天蓋地般報導了該喜訊。
但此刻數學界反倒十分冷靜,明確指出論證還需仔細審核,因為歷史上曾多少次宣布證明但後來被查證錯誤。懷爾斯的證明被分為6個部分分別由6人審查,其中由凱茲負責的第三部分查出關於歐拉系的構造有嚴重缺陷,使科利瓦金—弗萊切方法不能對它適用,懷爾斯對此無能為力,1993年12月懷爾斯公開承認證明有問題,但表示很快會補正。一時間懷爾斯的證明被認為是歷史上拉梅、柯西、勒貝格、裡貝特(裡貝特也曾稱證明了谷山—志村猜想)錯誤證明的又一例子。1994年1月懷爾斯邀請劍橋大學講師理察·泰勒到普林斯頓幫他完善科利瓦金—弗萊切方法解決問題,但整整8個月過去,問題沒有解決。泰勒準備再過一個月後回劍橋,然後懷爾斯正式公布手稿,承認證明失敗,1994年9月19日懷爾斯想自己證明失敗原因該怎麼寫,回顧自己是先用巖澤理論未能突破而後用科利瓦金—弗萊切方法,又對該法一類特殊歐拉系出了問題,這樣一想,突然又想到何不再用巖澤理論結合科利瓦金—弗萊切方法試試?問題解法就是這樣,懷爾斯絕處逢生,修補了漏洞。1994年10月25日11點4分11秒,懷爾斯通過他以前的學生、美國俄亥俄州立大學教授卡爾·魯賓向世界數學界發送了費馬大定理的完整證明郵件,包括一篇長文「模形橢圓曲線和費馬大定理」,作者安德魯·懷爾斯。另一篇短文「某些赫克代數的環理論性質」作者理察·泰勒和安德魯·懷爾斯。至此費馬大定理得證。
1995年,他們把證明過程發表在《數學年刊》(Annals of Mathematics)第141卷上,證明過程包括兩篇文章,共130頁,佔滿了全卷,題目分別為Modular elliptic curves and Fermat’s Last Theorem(模形橢圓曲線和費馬大定理)以及Ring-theoretic properties of certain Hecke algebras(某些赫克代數的環理論性質)。
*文章部分內容摘自網際網路
歡迎關注愛數學之家, 一個致力於傳播數學文化的公眾號