圖片來源:medicalxpress.com
2015年11月26日 訊 /生物谷BIOON/ --近日,一項刊登在國際雜誌Scientific Reports上的研究報告中,來自國外的科學家開發了一種治療多形性膠質母細胞瘤(GBM)的新型療法,多形性膠質母細胞瘤是目前最常見且致死性最高的一種原發性腦部腫瘤。
膠質母細胞瘤患者的5年生存率一般抵禦10%,研究者Verbridge指出,目前膠質母細胞瘤的治療並沒有明顯被改善,而且並沒有療法可以優先靶向殺滅神經膠質瘤幹細胞或彌散的浸潤細胞,從而經常導致患者在手術、化療或放療法疾病復發。本文研究就描述了一種涉及脈衝電場( Pulsed Electric Fields)的新型療法,其可以更好地靶向作用並且殺滅惡性細胞,同時還對健康細胞無影響。
膠質母細胞瘤通常對常規及靶向性的癌症療法極其耐受,部分是因為腫瘤是由多種不同的癌症細胞組成,患者首次治療後復發非常常見。本文研究中,研究者Davalos等人依據此前的一項專利設計出了新型的技術,此前專利主要是直接向腫瘤中插入電極來誘導腫瘤細胞出現不可逆的電穿孔(IRE),這種療法可以成功用於治療和患者病情相似的犬類腦瘤。
如今研究者開發了高頻率版本的療法(HFIRE),其可以利用脈衝引發細胞快速破裂,IRE和HFIRE都可以殺死腫瘤細胞,但機制卻不同,IRE療法可以通過感染細胞外膜來促進細胞死亡,而HFIRE則可以促進細胞核崩塌,由於該療法可以靶向作用細胞核,因此研究者假設,相比正常細胞而言具有較大核的惡性細胞或許存在較低的閾值。
後期研究中研究人員將通過進行體內實驗確定選擇性的HFIRE消融療法發揮功能的機制,研究者認為,將這種療法同其他療法相結合或許可以更加有效地殺滅侵襲性的膠質母細胞瘤細胞,從而為患者帶來較大的健康效益。(生物谷Bioon.com)
本文系生物谷原創編譯整理,歡迎轉載!轉載請註明來源並附原文連結。更多資訊請下載生物谷APP.
Targeted cellular ablation based on the morphology of malignant cells
Jill W. Ivey, Eduardo L. Latouche, Michael B. Sano, John H. Rossmeisl, Rafael V. Davalos & Scott S. Verbridge
Treatment of glioblastoma multiforme (GBM) is especially challenging due to a shortage of methods to preferentially target diffuse infiltrative cells, and therapy-resistant glioma stem cell populations. Here we report a physical treatment method based on electrical disruption of cells, whose action depends strongly on cellular morphology. Interestingly, numerical modeling suggests that while outer lipid bilayer disruption induced by long pulses (~100 μs) is enhanced for larger cells, short pulses (~1 μs) preferentially result in high fields within the cell interior, which scale in magnitude with nucleus size. Because enlarged nuclei represent a reliable indicator of malignancy, this suggested a means of preferentially targeting malignant cells. While we demonstrate killing of both normal and malignant cells using pulsed electric fields (PEFs) to treat spontaneous canine GBM, we proposed that properly tuned PEFs might provide targeted ablation based on nuclear size. Using 3D hydrogel models of normal and malignant brain tissues, which permit high-resolution interrogation during treatment testing, we confirmed that PEFs could be tuned to preferentially kill cancerous cells. Finally, we estimated the nuclear envelope electric potential disruption needed for cell death from PEFs. Our results may be useful in safely targeting the therapy-resistant cell niches that cause recurrence of GBM tumors.