衝擊2018年中考數學,專題複習48:解直角三角形的應用

2021-01-08 吳國平數學教育

典型例題分析1:

小明要測量公園被湖水隔開的兩棵大樹A和B之間的距離,他在A處測得大樹B在A的北偏西30°方向,他從A處出發向北偏東15°方向走了200米到達C處,測得大樹B在C的北偏西60°方向.

(1)求∠ABC的度數;

(2)求兩棵大樹A和B之間的距離(結果精確到1米)

考點分析:

解直角三角形的應用﹣方向角問題.

題幹分析:

(1)先利用平行線的性質得∠ACM=∠DAC=15°,再利用平角的定義計算出∠ACB=105°,然後根據三角形內角和計算∠ABC的度數;

(2)作CH⊥AB於H,如圖,易得△ACH為等腰直角三角形,則可以得到AH、CH、AC三者之間的關係,在Rt△BCH中利用含30度的直角三角形三邊的關係得到BH、CH、AB、AH幾者之間的關係,然後進行近似計算即可。

解題反思:

本題考查了解直角三角形的應用﹣方向角問題:在解決有關方向角的問題中,一般要根據題意理清圖形中各角的關係,有時所給的方向角並不一定在直角三角形中,需要用到兩直線平行內錯角相等或一個角的餘角等知識轉化為所需要的角.解決此題的關鍵作CH⊥AB構建含特殊角的直角三角形。

典型例題分析2:

如圖所示,某工程隊準備在山坡(山坡視為直線l)上修一條路,需要測量山坡的坡度,即tanα的值.測量員在山坡P處(不計此人身高)觀察對面山頂上的一座鐵塔,測得塔尖C的仰角為31°,塔底B的仰角為26.6°.已知塔高BC=40米,塔所在的山高OB=240米,OA=300米,圖中的點O、B、C、A、P在同一平面內.

則四邊形ODPE為矩形.

在Rt△PBD中,

∵∠BDP=90°,∠BPD=26.6°,

∴BD=PDtan∠BPD=PDtan26.6°;

在Rt△CPD中,

∵∠CDP=90°,∠CPD=31°,

∴CD=PDtan∠CPD=PDtan31°;

∵CD﹣BD=BC,

∴PDtan31°﹣PDtan26.6°=40,

∴0.60PD﹣0.50PD=40,

解得PD=400(米),

∴P到OC的距離為400米;

(2)在Rt△PBD中,BD=PDtan26.6°≈400×0.50=200(米),

∵OB=240米,

∴PE=OD=OB﹣BD=40米,

∵OE=PD=400米,

∴AE=OE﹣OA=400﹣300=100(米),

∴tanα=PE/AE=40/100=0.4,

∴坡度為0.4.

考點分析:

解直角三角形的應用﹣仰角俯角問題;解直角三角形的應用﹣坡度坡角問題.

題幹分析:

(1)過點P作PD⊥OC於D,PE⊥OA於E,則四邊形ODPE為矩形,先解Rt△PBD,得出BD=PDtan26.6°;解Rt△CPD,得出CD=PDtan31°;再根據CD﹣BD=BC,列出方程,求出PD=400即可求得點P到OC的距離;

(2)利用求得的線段PD的長求出PE=40,AE=100,然後在△APE中利用三角函數的定義即可求解.

解題反思:

本題考查了解直角三角形的應用﹣仰角俯角問題、坡度坡角問題,難度適中,通過作輔助線,構造直角三角形,利用三角函數求解是解題的關鍵。

相關焦點

  • 「創作開運禮」中考數學複習專題,解直角三角形的應用
    中考數學,解直角三角形是一個重點,分值應該在30左右,而且很多大的題目解題都要用到直角三角形的相關知識,今天給大家分享解直角三角形專題希望能對大家的複習帶來幫助。知識點一、仰角、俯角問題仰角:指從下往上看,視線與水平線的夾角。
  • 中考數學專題複習:直角三角形
    【解後感悟】根據直角三角形的性質、以及斜邊上中線性質、含30°角的直角三角形性質是解此題的關鍵,解題時注意分類討論的運用.類型二 直角三角形的分類討論【解後感悟】分類討論,相似三角形的性質是解答此題的關鍵.類型三 勾股定理的應用
  • 中考數學加油,解直角三角形應用的專題複習
    典型例題分析2:隨著近幾年我市私家車日越增多,超速行駛成為引發交通事故的主要原因之一.某中學數學活動小組為開展「文明駕駛、關愛家人、關愛他人」的活動,設計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點P,在筆直的車道m上確定點O,使PO和m垂直,測得PO的長等於21米,在m上的同側取點A、B,使∠PAO=30
  • 相似三角形解直角三角形,專題複習資料,考試20分輕鬆拿
    創新的思想,奇妙的解題思路,這裡是奇思妙數學課堂,分享不一樣的數學課堂。在中考數學中相似三角形與解直角三角形是非常重要的一個章節內容。這兩個知識點不僅有選擇題和填空題,還會出現證明題。在以往的數學考試中,它的分值都不會低於20分。
  • 中考數學專題複習:第18講直角三角形
    真題精選例題精講類型一 直角三角形的性質與判定【解後感悟】根據直角三角形的性質、以及斜邊上中線性質、含30°角的直角三角形性質是解此題的關鍵,解題時注意分類討論的運用.類型二 直角三角形的分類討論【解後感悟】分類討論,相似三角形的性質是解答此題的關鍵.
  • 中考數學:解直角三角形問題,掌握技巧,定拿滿分!
    在中考數學試卷中,解直角三角形問題是中考必考題目。一般分值在10分左右,掌握此類題解題技巧,抓滿分不成問題。此類題涉及的知識點:一、在直角三角形中(1)邊:勾股定理。在直角三角形中,斜邊中線等於斜邊一半。
  • 中考備考:數學專題複習,三角形+方程與不等式的應用,專項訓練
    六月份是一個考試月,也是一個畢業月,今年2019年的中考和高考都即將來臨,高考還有5天,中考還有12天左右(因各地區中考時間不一樣,所以倒計時也不一樣)。不管你們複習得如何,都必須要在幾天後上考場了。數學是小升初、中考、高考這三個重要考試都必須要考的一個學科,不管是哪一個階段,我們都得重視數學,尤其是初中,更應該加強對數學的學習,數學是整個學習階段都要重視的學科,初中數學的知識點相比小學難了很多,但是相比高中又簡單了很多,所以,綜合來看,初中數學是相對比較簡單的,只要學生有認真聽課,還是能考高分的。
  • 學好解直角三角形,讓中考輕輕鬆鬆多拿10分
    直角三角形是初中幾何中最重要的內容之一,可以說是每年中考數學必考幾何熱點之一。其中,解直角三角形是直角三角形最經典應用內容,如測高、測距、航海、堤壩的橫截面等實際問題,一直備受中考數學命題老師的青睞。在一些文章裡,本人經常強調,運用數學知識解決實際問題一直是中考數學的重點考查對象。正因為運用解直角三角形能很好解決實際問題,其就成為中考命題的熱點之一。
  • 九年級數學,關於解直角三角形的應用這些你必須掌握,考試熱點!
    在前面的文章中,我們已經分享了關於解直角三角形的概念相關知識,今天接著分享一下關於解直角三角形的應用,這類知識主要包含三類知識點:①仰角和俯角;②坡度和坡角;③方向角或方位角;每年全國各省市的中考真題中常常看到它們的身影,屬於中考數學的必考題,今天我們還是將主要採取「知識點+題型」的結構來進行分享
  • 中考數學考點總複習:5張圖輕鬆搞定函數專題複習知識點!請收藏
    距離2020年的中考越來越近,但進入校內學習的時間還遙遙無期,這種情況對於即將面臨中高考的考生來說倍感壓力山大,但隨著國內疫情不斷的回暖起來,相信過不了多久也即將迎來開學,當前距離2020年中考還有3個月,而中考也是相對來說較為重要的考試,成績的好壞直接影響著進入下半場角逐的高度。
  • 2019年中考數學定理複習之相似三角形
    中考網整理了關於2019年中考數學定理複習之相似三角形,希望對考生有所幫助,僅供參考。   相似三角形   比例的基本性質:如果a:b=c:d,那麼ad=bc;如果ad=bc,那麼a:b=c:d   合比性質:如果a/b=c/d,那麼(a±b)/b=(c±d)/d   等比性質:如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼(a+c+…+m)/(b+d+…+n)=a/b   平行線分線段成比例定理
  • 中考數學倒計時,拿下解直角三角形的應用問題
    解直角三角形的應用問題,典型例題分析1:小明在課外活動中觀察吊車的工作過程,繪製了如圖所示的平面圖形,已知吊車吊臂的至點O距離地面的高OO′=1.5米,吊臂OA長度為6米,當吊臂頂端由A點抬升至A′點(吊臂長度不變)
  • 中考數學複習第14課時,直角三角形的兩個考點及考試題型
    宅在家的九年級學生正有條不紊地進行中考複習,這次課給大家帶來直角三角形的兩個考點及考試題型。對直角三角形的複習必須熟記它的四個性質,在這基礎上,還有幾個重要結論:(1)SRt△ABC=1/2ab=1/2ch,其中a,b為兩條直角邊長,c為斜邊長,h為斜邊上的高;(2)Rt△ABC的內切圓半徑r=(a+b-c)/2,外接圓半徑R=c/2,其中a,b為兩條直角邊長,c為斜邊長。這兩個結論能給我們解題帶來方便,給我們節省時間。
  • 平面直角坐標系三角形面積的「萬能」公式
    平面直角坐標系的三角形面積,通常過其中一點作水平線或鉛垂線,利用水平寬或鉛垂高進行計算,或者利用割補的方法轉化為規則圖形。
  • 中考數學複習指導:三角形的重心
    中考數學複習指導:三角形的重心   已知:△ABC中,D為BC中點,E為AC中點,AD與BE交於O,CO延長線交AB於F。求證:F為AB中點。   證明:根據燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再應用燕尾定理即得AF=BF,命題得證。   重心的幾條性質:   1.重心和三角形3個頂點組成的3個三角形面積相等。   2.重心到三角形3個頂點距離的平方和最小。
  • 初三數學三角函數知識點複習:解直角三角形注意點
    2.有的問題不能直接利用直角三角形內部關係解題,但可以添加合適的輔助線轉化為解直角三角形的問題. 3.一些較複雜的解直角三角形的問題可以通過列方程或方程組的方法解題. 4.解直角三角形的方法可概括為「有弦(斜邊)用弦(正弦、餘弦),無弦有切(正切、餘切),寧乘毋除,取原避中」其意指:當已知或求解中有斜邊時,可用正弦或餘弦;無斜邊時,就用正切或餘切;當所求元素既可用乘法又可用除法時,則用乘法,不用除法;既可由已知數據又可用中間數據求解時,則取原始數據,忌用中間數據.
  • 2020年中考數學複習:初中三年數學重難點
    中考網整理了關於2020年中考數學複習:初中三年數學重難點,希望對同學們有所幫助,僅供參考。   構建完整的知識框架   1.構建完整的知識框架是我們解決問題的基礎,想要學好數學必須重視基礎概念,必須加深對知識點的理解,然後會運用知識點解決問題,遇到問題自己學會反思及多維度的思考,最後形成自己的思路和方法。
  • 中考數學題型:解直角三角形解題分析、常作的輔助線
    一般地,直角三角形中,除直角外,共有五個元素,即三條邊和兩個銳角。由直角三角形中的已知元素,求出其餘未知元素的過程,稱之為解直角三角形。利用直角三角形的邊角關係,知道其中的兩個元素(至少有一個是邊),就可以求出其餘三個未知元素。
  • 直角三角形,考的不僅是勾股定理,關鍵在於應用
    在整個初中數學知識框架當中,解直角三角形既是學習幾何的重要內容,又是今後進入高中學習解斜三角形、三角函數等知識的基礎,作為一種承上啟下的知識點,自然會是中考的命題熱點。同時,在實際生活工作中,解直角三角形的知識又廣泛應用於測量、工程技術和物理之中,因此,解直角三角形的應用題利於提高學生分析問題和解決問題的能力,培養空間想像的能力。中考數學對於解直角三角形的應用考查,主要是涉及仰角、俯角、方位角、坡度等重要知識點,今天我們選擇幾道典型中考試題進行分析和研究,希望能幫助大家學會分析此類題型,掌握相關的解題規律。
  • 中考數學:直角三角形存在性問題,2種方法教你搞定動點壓軸題
    #中考數學複習#近幾年各地的數學中考中,探索因動點產生的存在性問題頻頻岀現,這類試題的知識覆蓋面較廣, 綜合性較強,題意構思精巧,要求學生有較高的分析問題、解決問題的能力。這類問題識記上是有據可依、有法可解的,在此通過系統的整理,將這類問題的解題策略結合例題進行綜合性的一個闡述,希望能對廣大同學解決此類問題有所幫助那麼,我們今天呢,就講解一下直角三角形存在性問題,到底該如何解決!