如何添加輔助線是初中數學的難點?已知角平分線有這四種思路

2021-01-08 走進數學課堂

初中幾何問題的難點在於添加輔助線,就全等三角形這章而言,添加輔助線的主要目的是構造全等三角形。所以當已知條件中出現角平分線時,我們不難想到添加輔助線的常見方式有以下四種類型。

這題已經有角平分線到角一邊的垂線,只需要作出到另一邊的垂線,就可以應用角平分線的性質或者全等三角形的性質。連接OA,過點O作OE⊥AB,OF⊥AC,垂足分別為E、F。因為BO是∠ABC的平分線,且OD⊥BC,OE⊥AB,所以OE=OD=1.8 cm;同理OF=OD=1.8 cm。

因為角的平分線已經具備了全等三角形的兩個條件(角相等和公共邊),所以在處理角的平分線的問題時,常作出全等三角形的第三個條件。這題向兩邊作垂線段,利用「AAS」就可以判定出三角形全等。過點P作PE⊥OA於點E,PF⊥OB於點F,就構造出△PCE≌△PDF(AAS)。

這題不少人容易想到過點D作AB的垂線,這樣雖然構造出全等,但是跟結論2AE=BD無法聯繫。所以解決這題的關鍵不僅要結合角平分線,還要結合構造2AE來考慮。延長AE交BO的延長線於點F,這樣圖中就出現2對全等三角形:△ABE≌△FBE(ASA),△AOF≌△BOD(ASA)。

證明線段的和差關係,我們常採用截長補短的方法。在AD上截取DH=BD,連接EH,FH。因為AD是BC邊上的中線,所以BD=CD=DH。再結合角平分線的性質,可得到△BDE≌△HDE(SAS)和△CDF≌△HDF(SAS)。

輔助線再解決幾何問題時,主要起到橋梁的作用。在添加時,應結合已知條件和所求結論來考慮,讓已知條件發揮最大作用,讓條件更加集中。

相關焦點

  • 不知怎麼作輔助線?初中數學4種圖形輔助線添加方法,很實用!
    數學幾何版塊,有時候根據題目已知條件無法尋得求證條件,這時候就需要添加輔助線,簡單的一條輔助線就能使得解題變得很簡單。但是有很多同學卻不知怎樣添加合適的輔助線,看到答案後才恍然大悟原來要這樣添加,今天,小星整理了初中階段數學中幾個主要幾何圖形添加輔助線的方法,希望對大家有所幫助。
  • 初中數學:角平分線的4種輔助線(方法總結,講練結合)
    本篇重點講解「角平分線的四種輔助線」。(已推出的其他系列內容,請關注「胡不歸數學課堂」查看)作有關角平分線的輔助線,常見的有四種方法:① 如下圖,由角的平分線上的一點向角的一邊或兩邊作垂線,可以用角的平分線性質定理解題;② 如下圖,以角的平分線為軸,將圖形翻折,在角的平分線兩側構造全等三角形,使已知與結論發生關係出現新的條件;③ 如下圖,當題設有角平分線及與角平分線垂直的線段
  • 初中幾何常見輔助線之口訣,實用(角平分線)
    一 初中幾何常見輔助線口訣人說幾何很困難,難點就在輔助線。輔助線,如何添?把握定理和概念。還要刻苦加鑽研,找出規律憑經驗。三角形圖中有角平分線,可向兩邊作垂線。也可將圖對摺看,對稱以後關係現。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。
  • 初中數學重難點:「圓的輔助線」如何畫?這7種畫法幫你1分鐘解題
    初中數學重難點:「圓的輔助線」如何畫?這7種畫法掌握好,1分鐘幫你迅速解題!圓,是我們從小就熟悉的圖形,小學時候剛接觸到圓,覺得它甚是「可愛」。可是,到了初中,很多同學變得苦惱起來,什麼是弦?什麼是弧?還有什麼是圓心角、圓周角?
  • 初中數學:怎樣添加二倍角問題的輔助線
    一些幾何題中常含有一個角是另一個角的二倍的條件,處理這類問題常用如下的方法添加輔助線:(1)作二倍角的平分線,構成等腰三角形.如下圖,在△ABC中,∠ABC=2∠C,作∠ABC的角平分線交AC於點D,則∠DBC=∠C,△DBC是等腰三角形.
  • 角平分線如何做輔助線,學霸總結了4種模型,輕鬆應付中考
    角平分線2大輔助線思路4種基本模型對稱形思路包括3種基本模型,思想都是為了構造全等三角形,然後轉換圖像中的角度和線段關係。平行線思路則是為了構造一個等腰三角形,通常是為了轉移線段關係。雙角平分線夾角公式記住這個結論,在選擇題、填空題裡可以直接使用,快人一步。在解答題裡能給你一個思路,讓你知道這兩個角是有一定關係的。常見題型(1)、梯形裡傾斜放置一個三角形通常就是構造角平分線邊垂線模型,如果是非直角,就是構造角平分線對摺模型,最終構造全等三角形。如圖,作ME⊥AD,構造△DCM≌△EDM。
  • 初中數學:19種有關三角形的輔助線方法歸納,結合例題實戰演練
    初中數學:有關三角形的輔助線方法歸納,共是19種類型,結合例題實戰演練,適合想要提升自己解題能力的同學。輔助線的使用對大部分初中同學來說是難以逾越的一條鴻溝,難度大,無從下手已經成為常態,今天唐老師帶大家一起搞定三角形有關的輔助線使用方法。
  • 初中幾何輔助線口訣,太有才了!不過只能當作參考
    初中幾何在中考數學中佔「半壁江山」,初中幾何的成敗決定了初中數學的成敗。而添加輔助線又是決定初中幾何成敗的關鍵,在數學圈都流傳「得輔助線者得幾何,得幾何者得初中數學」的說法。為了幫助初中省更好地掌握幾何輔助線的添加技巧,有人總結了三角形、四邊形、圓等幾何圖形中常用輔助線,並且把它們總結成歌謠的形式,以方便記憶。這首歌謠概括了三角形中添加輔助線的幾種常見方法,方法一:已知條件有有角平分線,可以過角平分線上的點作角兩邊的垂線,也可添加角一邊的平行線。方法二:已知條件中有垂直平分線,常過連接垂直平分線上的點與線段的兩個端點。
  • 2018初中數學幾何中常見輔助線的作法順口溜
    新一輪中考複習備考周期正式開始,中考網為各位初三考生整理了中考五大必考學科的知識點,主要是對初中三年各學科知識點的梳理和細化,幫助各位考生理清知識脈絡,熟悉答題思路,希望各位考生可以在考試中取得優異成績!下面是《2018初中數學幾何中常見輔助線的作法順口溜》,僅供參考!
  • 初中數學全等三角形輔助線的幾種作法,家長可以保存給孩子
    小仙的所在城市,初中版本數學教材用的是北師大版,全等三角形是在初一下學期開始學習的,人教版是在初二。說是話,證明三角型全等的知識點並不難,即使算上直角三角形全等證明方法,其實總共才有5種(SSS,SAS,ASA,AAS,HL)。
  • 中考數學——角平分線的判定
    下面我們證明看看已知:如圖,QD⊥OA,QE⊥OB,點D、E為垂足,QD=QE.求證:點Q在∠AOB的平分線上.綜上可得:到一個角的兩邊距離相等的點在這個角的平分線上。所以,角平分線的判定定理:到一個角的兩邊距離相等的點在這個角的平分線上。因為到一個角兩邊距離相等的點有無數個,且這無數個點都在角平分線上。所以:角平分線可以看做到角的兩邊距離相等的所有點的集合下面我們舉例說明角平分線的判定定理的應用:例1.
  • 初中數學初二上冊《角平分線的判定》精選練習題講解
    如圖所示,在△ABC中,點C是∠ABC和∠ACB的平分線的交點。求證:OA是∠BAC的平分線。1、角平分線的判定方法:角的內部到角的兩邊的距離相等的點在角的平分線上。2、由於從已知中找不到合適的條件,所以需要添加輔助線來解決問題。因為在△ABC內部已經存在兩條角平分線了,所以我們添加的輔助線就是交點到三角形的邊的距離。即過點O作OD垂直BC於點D,作OE⊥AC於點E,作OF⊥AB於點F。3、根據「角的平分線上的點到角的兩邊的距離相等」這個知識點,就可以證明OD=OE=OF。
  • 初中數學最重要的兩條線:垂直平分線和角平分線深度檢測
    北師大版初中數學下冊第一章《三角形的證明》,這一章內容絕大部分都是已經學過的,實際上是一個複習和鞏固的章節,當然也有新的知識點。除了三角形以外,最重要的知識點就是兩線,線段的垂直平分線,角平分線。這可能是初中數學最重要的兩條線。垂直平分線在以前學軸對稱的時候,實際上已經學過,對稱軸就是一條垂直平分線。
  • 2020初三數學複習:角平分線與線段垂直平分線,定理轉化經典代表
    #01單元複習要點角平分線與線段垂直平分線,本是兩個不相關的概念,但基於集合概念的需要和軸對稱圖形的共性,我們把這兩個單元放在了一起。而在考試中,出經常把這兩個概念融匯到同一個題目中對學生進行考查,題目的總難度不會太大,但也是不可輕視的一個單元。本單元的主要知識點是:線段垂直平分線的性質和判定;角平分線的性質和判定。
  • 八年級暑假預習,角平分線的定義、性質與判定的區別,學會使用
    在學習角平分線的軸對稱之前,學習了全等三角形,因此很多同學都習慣性地利用全等三角形解題,不知道如何正確使用角平分線的性質定理或判定定理進行解題。本篇主要介紹角平分線的基本定義,角平分線的性質與角平分線的判定,學會用數學語言進行證明,而不是所有的題目都依靠全等三角形。
  • 八年級幾何輔助線模型之「角平分線四大模型」模型三
    上幾篇文章已經分享了角平分線的前兩種模型,一是向角的兩邊做垂線,另外一個是在角的一邊截取構造全等三角形,實現線或角的轉移。今天就要分享的是角平分線的第三種模型,就是利用等腰三角形的「三線合一」的性質,來構造全等三角形,將等腰三角形的和角平分線的模型聯繫在一起。
  • 初中數學:求直角三角形斜邊上的角平分線,你會幾種方法?
    那麼,直角三角形斜邊上的角平分線,你會求嗎?本文舉一例,提供四種方法,來探討這個問題。例題:如圖,在直角三角形△ABC中,∠ACB=90°,∠B=30°,∠A=60°,CD平分∠ACB,若AD=2,則CD=__________先來分析本題:這是個「好」直角三角形,帶有,∠B=30°,∠A=60°,而且由CD平分∠ACB得到∠ACD=∠BCD=45°,本題自帶很多特殊角,可以為我所用,方便計算:
  • 初中數學——角平分線的性質
    已知:∠AOB.求作:∠AOB的平分線.仔細觀察步驟作法:(1)以點O為圓心,適當 長為半徑畫弧,交OA於點M,交OB於點N.角平分線性質定理:角的平分線上的點到角的兩邊的距離相等.應用所具備的條件:(1)角的平分線;(2)點在該平分線上;(3)垂直距離.
  • 初中數學乾貨:全等三角形輔助線難題突破
    全等三角形是初中學習非常重要的一部分,月考、期中期末考,還有競賽都有全等的題目。深入全等,你會發現,全等的輔助線是非常重要的一部分。遇到角平分線,可以自角平分線上的某一點向角的兩邊作垂線,利用的思維模式是三角形全等變換中的「對摺」,所考知識點常常是角平分線的性質定理或逆定理。
  • 初中數學常見輔助線(建議收藏)
    3.已知等腰三角形底邊中點,可以考慮與頂點連接用「三線合一」4.有些題目的中點不直接給出,此時需要我們挖掘題目中的隱含中點,例如:直角三角形中斜邊中點,等腰三角形底邊上的中點,當沒有這些條件的時候,可以用輔助線添加.二、角平分線模型的構造與角平分線有關的常用輔助線作法,即角平分線的四大基本模型。