初中幾何常見輔助線之口訣,實用(角平分線)

2021-01-08 智慧學數學

一 初中幾何常見輔助線口訣

人說幾何很困難,難點就在輔助線。輔助線,如何添?把握定理和概念。

還要刻苦加鑽研,找出規律憑經驗。

三角形

圖中有角平分線,可向兩邊作垂線。也可將圖對摺看,對稱以後關係現。

角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。

線段垂直平分線,常向兩端把線連。線段和差及倍半,延長縮短可試驗。

線段和差不等式,移到同一三角去。三角形中兩中點,連接則成中位線。

三角形中有中線,延長中線等中線。

四邊形

平行四邊形出現,對稱中心等分點。梯形問題巧轉換,變為△和□。

平移腰,移對角,兩腰延長作出高。如果出現腰中點,細心連上中位線。

上述方法不奏效,過腰中點全等造。證相似,比線段,添線平行成習慣。

等積式子比例換,尋找線段很關鍵。直接證明有困難,等量代換少麻煩。

斜邊上面作高線,比例中項一大片。

圓形

半徑與弦長計算,弦心距來中間站。圓上若有一切線,切點圓心半徑連。

切線長度的計算,勾股定理最方便。要想證明是切線,半徑垂線仔細辨。

是直徑,成半圓,想成直角徑連弦。弧有中點圓心連,垂徑定理要記全。

圓周角邊兩條弦,直徑和弦端點連。弦切角邊切線弦,同弧對角等找完。

要想作個外接圓,各邊作出中垂線。還要作個內接圓,內角平分線夢圓

如果遇到相交圓,不要忘作公共弦。內外相切的兩圓,經過切點公切線。

若是添上連心線,切點肯定在上面。要作等角添個圓,證明題目少困難。

注意點

輔助線,是虛線,畫圖注意勿改變。假如圖形較分散,對稱旋轉去實驗。

基本作圖很關鍵,平時掌握要熟練。解題還要多心眼,經常總結方法顯。

切勿盲目亂添線,方法靈活應多變。分析綜合方法選,困難再多也會減。

虛心勤學加苦練,成績上升成直線。

二 由角平分線想到的輔助線

口訣:

圖中有角平分線,可向兩邊作垂線。也可將圖對摺看,對稱以後關係現。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。

角平分線具有兩條性質:a、對稱性;b、角平分線上的點到角兩邊的距離相等。對於有角平分線的輔助線的作法,一般有兩種。

①從角平分線上一點向兩邊作垂線;

②利用角平分線,構造對稱圖形(如作法是在一側的長邊上截取短邊)。

通常情況下,出現了直角或是垂直等條件時,一般考慮作垂線;其它情況下考慮構造對稱圖形。至於選取哪種方法,要結合題目圖形和已知條件。

與角有關的輔助線

(一)、截取構全等

幾何的證明在於猜想與嘗試,但這種嘗試與猜想是在一定的規律基本之上的,希望同學們能掌握相關的幾何規律,在解決幾何問題中大膽地去猜想,按一定的規律去嘗試。下面就幾何中常見的定理所涉及到的輔助線作以介紹。

如圖1-1,∠AOC=∠BOC,如取OE=OF,並連接DE、DF,則有△OED≌△OFD,從而為我們證明線段、角相等創造了條件。

例1. 如圖1-2,AB//CD,BE平分∠BCD,CE平分∠BCD,點E在AD上,求證:BC=AB+CD。

分析:此題中就涉及到角平分線,可以利用角平分線來構造全等三角形,即利用解平分線來構造軸對稱圖形,同時此題也是證明線段的和差倍分問題,在證明線段的和差倍分問題中常用到的方法是延長法或截取法來證明,延長短的線段或在長的線段長截取一部分使之等於短的線段。但無論延長還是截取都要證明線段的相等,延長要證明延長後的線段與某條線段相等,截取要證明截取後剩下的線段與某條線段相等,進而達到所證明的目的。

簡證:在此題中可在長線段BC上截取BF=AB,再證明CF=CD,從而達到證明的目的。這裡面用到了角平分線來構造全等三角形。另外一個全等自已證明。此題的證明也可以延長BE與CD的延長線交於一點來證明。自已試一試。

例2. 已知:如圖1-3,AB=2AC,∠BAD=∠CAD,DA=DB,求證DC⊥AC

分析:此題還是利用角平分線來構造全等三角形。構造的方法還是截取線段相等。其它問題自已證明。

例3. 已知:如圖1-4,在△ABC中,∠C=2∠B,AD平分∠BAC,求證:AB-AC=CD

分析:此題的條件中還有角的平分線,在證明中還要用到構造全等三角形,此題還是證明線段的和差倍分問題。用到的是截取法來證明的,在長的線段上截取短的線段,來證明。試試看可否把短的延長來證明呢?

練習

1. 已知在△ABC中,AD平分∠BAC,∠B=2∠C,求證:AB+BD=AC

2. 已知:在△ABC中,∠CAB=2∠B,AE平分∠CAB交BC於E,AB=2AC,求證:AE=2CE

3. 已知:在△ABC中,AB>AC,AD為∠BAC的平分線,M為AD上任一點。求證:BM-CM>AB-AC

4. 已知:D是△ABC的∠BAC的外角的平分線AD上的任一點,連接DB、DC。求證:BD+CD>AB+AC。

相關焦點

  • 初中幾何輔助線口訣,太有才了!不過只能當作參考
    初中幾何在中考數學中佔「半壁江山」,初中幾何的成敗決定了初中數學的成敗。而添加輔助線又是決定初中幾何成敗的關鍵,在數學圈都流傳「得輔助線者得幾何,得幾何者得初中數學」的說法。為了幫助初中省更好地掌握幾何輔助線的添加技巧,有人總結了三角形、四邊形、圓等幾何圖形中常用輔助線,並且把它們總結成歌謠的形式,以方便記憶。這首歌謠概括了三角形中添加輔助線的幾種常見方法,方法一:已知條件有有角平分線,可以過角平分線上的點作角兩邊的垂線,也可添加角一邊的平行線。方法二:已知條件中有垂直平分線,常過連接垂直平分線上的點與線段的兩個端點。
  • 如何添加輔助線是初中數學的難點?已知角平分線有這四種思路
    初中幾何問題的難點在於添加輔助線,就全等三角形這章而言,添加輔助線的主要目的是構造全等三角形。所以當已知條件中出現角平分線時,我們不難想到添加輔助線的常見方式有以下四種類型。這題已經有角平分線到角一邊的垂線,只需要作出到另一邊的垂線,就可以應用角平分線的性質或者全等三角形的性質。連接OA,過點O作OE⊥AB,OF⊥AC,垂足分別為E、F。因為BO是∠ABC的平分線,且OD⊥BC,OE⊥AB,所以OE=OD=1.8 cm;同理OF=OD=1.8 cm。
  • 2018初中數學幾何中常見輔助線的作法順口溜
    新一輪中考複習備考周期正式開始,中考網為各位初三考生整理了中考五大必考學科的知識點,主要是對初中三年各學科知識點的梳理和細化,幫助各位考生理清知識脈絡,熟悉答題思路,希望各位考生可以在考試中取得優異成績!下面是《2018初中數學幾何中常見輔助線的作法順口溜》,僅供參考!
  • 八年級幾何輔助線模型之「角平分線四大模型」模型三
    上幾篇文章已經分享了角平分線的前兩種模型,一是向角的兩邊做垂線,另外一個是在角的一邊截取構造全等三角形,實現線或角的轉移。今天就要分享的是角平分線的第三種模型,就是利用等腰三角形的「三線合一」的性質,來構造全等三角形,將等腰三角形的和角平分線的模型聯繫在一起。
  • 與角平分線有關的幾何模型大全
    角平分線是初中數學中最重要幾種線之一,在中考中屬於必考知識點。角平分線本身涉及的知識點不多,比較容易理解和掌握,難度不大。在角平分線的學習中首先需要掌握角平分線的定義、性質定理和判定定理。1.定義:把一個角平均分成大小相等的兩個角的一條射線。
  • 不知怎麼作輔助線?初中數學4種圖形輔助線添加方法,很實用!
    數學幾何版塊,有時候根據題目已知條件無法尋得求證條件,這時候就需要添加輔助線,簡單的一條輔助線就能使得解題變得很簡單。但是有很多同學卻不知怎樣添加合適的輔助線,看到答案後才恍然大悟原來要這樣添加,今天,小星整理了初中階段數學中幾個主要幾何圖形添加輔助線的方法,希望對大家有所幫助。
  • 角平分線如何做輔助線,學霸總結了4種模型,輕鬆應付中考
    角平分線2大輔助線思路4種基本模型對稱形思路包括3種基本模型,思想都是為了構造全等三角形,然後轉換圖像中的角度和線段關係。平行線思路則是為了構造一個等腰三角形,通常是為了轉移線段關係。雙角平分線夾角公式記住這個結論,在選擇題、填空題裡可以直接使用,快人一步。在解答題裡能給你一個思路,讓你知道這兩個角是有一定關係的。常見題型(1)、梯形裡傾斜放置一個三角形通常就是構造角平分線邊垂線模型,如果是非直角,就是構造角平分線對摺模型,最終構造全等三角形。如圖,作ME⊥AD,構造△DCM≌△EDM。
  • 初中數學:角平分線的4種輔助線(方法總結,講練結合)
    本篇重點講解「角平分線的四種輔助線」。(已推出的其他系列內容,請關注「胡不歸數學課堂」查看)作有關角平分線的輔助線,常見的有四種方法:① 如下圖,由角的平分線上的一點向角的一邊或兩邊作垂線,可以用角的平分線性質定理解題;② 如下圖,以角的平分線為軸,將圖形翻折,在角的平分線兩側構造全等三角形,使已知與結論發生關係出現新的條件;③ 如下圖,當題設有角平分線及與角平分線垂直的線段
  • 初中數學幾何常見輔助線口訣
    三角形   圖中有角平分線,可向兩邊作垂線。   也可將圖對摺看,對稱以後關係現。   角平分線平行線,等腰三角形來添。   角平分線加垂線,三線合一試試看。   線段垂直平分線,常向兩端把線連。   線段和差及倍半,延長縮短可試驗。
  • 初中數學常見輔助線(建議收藏)
    二、角平分線模型的構造與角平分線有關的常用輔助線作法,即角平分線的四大基本模型。已知P是∠MON平分線上一點,(1)若PA⊥OM於點A,如圖1,可以過P點作PB⊥ON於點B,則PB=PA.可記為「圖中有角平分線,可向兩邊作垂線」。
  • 初中幾何輔助線做法歸納總結之 角平分線上截取構造全等
    今天我們更新的是角平分線上截取構造全等,下面我們來看下模型:小夥伴們早上好,我們今天跟新的方法時角平分線上截取構造全等。我們先來看一下模型:小夥伴們早上好,我們今天跟新的方法時角平分線上截取構造全等。我們先來看一下模型:小夥伴們早上好,我們今天跟新的方法時角平分線上截取構造全等。我們先來看一下模型:小夥伴們,你們掌握這個技巧了麼?
  • 中考複習:口訣化記憶角的平分線模型結論,幫你助力幾何模型提分
    今天我們將分享初中數學中關於「角平分線模型」的重要知識,針對於數學的學習離不開方法的總結以及模型的理解,而角平分線模型又是初中數學考試中常考的考點,希望通過本文的分享可以使得學生和老師有所感悟,本講我們主要分享「三類角平分線模型」的相關知識,主要包括:①三角形的兩個內角的角平分線相交;②三角形的兩個外角的角平分線相交;③三角形一個內角及一個外角的角平分線相交;而這些三角形的角平分線的經典考察題型
  • 初中幾何怎么正確的添加輔助線(一)
    在幾何問題中,通過已知條件往往很難找到與所求的之間的關係,在這種情況下,我們就要通過做輔助線進行解題。輔助線可以幫助我們揭示圖形中隱藏的條件;可以將兩個及以上不相關的通過變換和轉化,使他們相對集中,聚攏到有關圖形上來,使題設條件與結論建立邏輯關係,從而推導出要求的結論;可以把複雜圖形分解成簡單圖形,從而達到化繁為簡,化難為簡的目的;還可以通過構造新的圖形的方法等,常見的方法:新直角三角形,三角形,等腰三角形等。
  • 初中數學最重要的兩條線:垂直平分線和角平分線深度檢測
    北師大版初中數學下冊第一章《三角形的證明》,這一章內容絕大部分都是已經學過的,實際上是一個複習和鞏固的章節,當然也有新的知識點。除了三角形以外,最重要的知識點就是兩線,線段的垂直平分線,角平分線。這可能是初中數學最重要的兩條線。垂直平分線在以前學軸對稱的時候,實際上已經學過,對稱軸就是一條垂直平分線。
  • 幾何中輔助線添加規律歸納
    幾何最難的地方就是輔助線的添加了,但是對於添加輔助線,還是有規律可循的,給大家整理了一些常見的添加輔助線的方法,掌握了對你一定有幫助!一、三角形中常見輔助線的添加1. 與角平分線有關的(1) 可向兩邊作垂線。
  • 初中數學乾貨:全等三角形輔助線難題突破
    全等三角形是初中學習非常重要的一部分,月考、期中期末考,還有競賽都有全等的題目。深入全等,你會發現,全等的輔助線是非常重要的一部分。三角形中常見輔助線的做法有以下幾種:截長法與補短法。遇到角平分線,可以自角平分線上的某一點向角的兩邊作垂線,利用的思維模式是三角形全等變換中的「對摺」,所考知識點常常是角平分線的性質定理或逆定理。
  • 初中數學——角平分線的性質
    求作:∠AOB的平分線.仔細觀察步驟作法:(1)以點O為圓心,適當 長為半徑畫弧,交OA於點M,交OB於點N.(2)分別以點MN為圓心,大於 MN的長為半徑畫弧,兩弧在∠AOB的內部相交於點C.
  • 初中幾何輔助線很難?這102條輔助線規律收藏一份,考試不愁!
    初中幾何輔助線很難?這102條輔助線規律收藏一份,考試不愁!初中數學有很多難點,幾何輔助線就是難點內容之一。輔助線能夠幫助同學們更輕鬆地解出一道幾何題,因此,幾何輔助線可以說是解幾何題的關鍵性內容。當題目給出的條件不足以解出這道題,我們通過添加輔助線構成新圖形,形成新關係,使分散的條件集中,建立已知與未知的橋梁,把問題轉化為自己能解決的問題,這就是幾何輔助線的重要作文。不過,很多同學在做幾何輔助線的時候經常容易出錯,除了不知應該將幾何輔助線作在什麼地方之外,也不知道在作出輔助線之後應該怎樣進行解答。
  • 初中數學全等三角形輔助線的幾種作法,家長可以保存給孩子
    一.中點類輔助線作法見到中線(中點),我們可以聯想的內容無非是倍長中線或者是與中點有關的一條線段,尤其是在涉及線段的等量關係時,倍長中線的應用更是較為常見,常見添加方法如下圖(AD 是三角形ABC的底邊的中線)。
  • 中考數學——角平分線的判定
    昨天,我們講解了角平分線的作法以及性質。今天,我們將講角平分線的判定。我們知道,角平分線的性質定理的內容是:角的平分線上的點到角的兩邊的距離相等。用符號語言描述即(如圖1):綜上可得:到一個角的兩邊距離相等的點在這個角的平分線上。所以,角平分線的判定定理:到一個角的兩邊距離相等的點在這個角的平分線上。因為到一個角兩邊距離相等的點有無數個,且這無數個點都在角平分線上。所以:角平分線可以看做到角的兩邊距離相等的所有點的集合下面我們舉例說明角平分線的判定定理的應用:例1.