解析歷年中考數學壓軸題,尋找2019年中考動點軌跡問題的解題良方

2020-12-04 走進數學課堂

在學初中數學中,每個人對「萬變不離其宗」這句話都是耳熟能詳,關鍵是什麼是「宗」?有人為了尋找答案,遨遊在茫茫題海;有人為了尋找答案,不惜尋訪名師。其實就初中數學而言,所謂的「宗」就是知己知彼。

拿初中數學中動點的軌跡問題來說,它不能是拋物線型,也不可能是雙曲線型,更不可能是奇形怪狀;因為若是這些情形,我們初中生是無法求出其路徑長的。所以我們就可以明確初中數學中的軌跡問題只有兩種情況:線段和圓弧。下面就以原文中的兩道例題來闡明動點的軌跡問題的解題策略。

這題中主動點是P,動點Q是因點P的變化而變化,動點P適中保持的不變量是BP·BQ=AB,根據這個不變量不難想到▲BAP 與▲BAQ相似,由於∠BPA是直徑所對的角,所以不管點P如何運動,它都是90°。根據相似三角形的性質也就得到∠BAQ=90°,即AQ⊥BA;因此點B到AQ的距離始終保持不變,從而得證點Q的運動軌跡是一條線段;而此時就點Q的運動路徑長只要分別求出點P在C點和A點時AQ的長度即可。

解完題後,我們來對這道題進行反思和總結,我們發現這題有個關鍵特徵,就是點B到動點Q的運動軌跡的距離不變。那是否具備點到直線距離不變的軌跡問題都是線段呢?我們不妨再通過一道題來驗證下我們的猜想。

此題中主動點是P,動點G是因點P的變化而變化,動點P在運動過程中始終保持不變的量是AP+BP=6。另外,題中還有不變的量是△APE和△PBF始終為等邊三角形。我們也不難發現點G到直線AB的距離始終保持不變,從而得證點G的運動軌跡是一條線段。而此時就點G的運動路徑長,便可轉化為求點Q的運動路徑長,這時只要分別求出點P在C點和D點時AQ的長度即可。

此題中主動點是P,動點H是因點P的變化而變化;動點P在運動過程中始終保持不變的量是OH始終垂直ME。而求動點H的運動軌跡,發現點H是到某條直線的距離有變化。可以確定動點軌跡不是線段,從而可推定點H的運動軌跡是一段圓弧。所以就要圓的定義找圓心,由於OH⊥ME,連結OM後,△AMH始終為直角三角形,而斜邊OM不變,因此根據直角三角形的性質容易得到動點日到DM的中點的距離始終不變。

下面只需確定圓弧的度數即可,即要找到動點H的始點和終點,根據圖形的變化容易分析得動點H無限接近點C,因此可將點C定為動點H的終點.當點P在O點時,點H在始點,記為H1,由對稱性可知,此時點E的坐標為(3,0),作MN⊥OE,垂足為N,取DM的中點F,再連結FC、F H1。

以上兩個例題剛好反映了初中數學軌跡問題中的兩種典型情況;此類問題的解題策略便是確定動點到定直線的距離保持不變,還是到定點的距離保持不變。這個就是初中數學軌跡問題的「宗」,沿著這個思路走下去,便能找到變化過程中不變的量,從而找到解題的突破口。

如果用這樣的方式去分析問題,那麼最終學生頭腦中對整個變化過程會有一個全面而清晰的了解;此題的解題思路中還體現了轉化思想,對培養學生的數學思維是有積極作用的。

相關焦點

  • 中考數學壓軸題:該省連續三年考動點與三角形,網友:2020年呢?
    中考數學壓軸題考什麼?二次函數!不少省份的考生也許會回答。但是具體到二次函數的哪一方面,考生們猶豫了!就算是常年研究中考命題方向的老師,也不敢肯定!因為二次函數壓軸題的類型那麼多,動點與線段,動點與角,動點與取值範圍,動點與四邊形等。
  • 中考數學壓軸題第11講,拋物線上的動點形成的直角三角形解題技巧
    中考進入倒計時,對於想在數學成績上取得領先優勢的初三小夥伴,中考數學中的壓軸題無疑成為橫在我們面前的最大障礙。如何突破呢?一是要有信心,著名的數學教育大師波利亞說:「認為解題純粹是一種智能活動是錯誤的,決心和情緒所起的作用很重要」;二是掌握一些常考題型的解題技巧。
  • 初中數學中考難點:九年級數學上冊圓及幾何動點最值問題考點解讀
    第29課弧長扇形面積、圓錐展開圖之間的關係,注意它們之間的關係,貴州內蒙古中考數學試題講解.第30課壓軸題:應用弧長面積公式研究運動軌跡或掃過的面積問題,關鍵是藉助等面積轉移進行割補法處理將不規則圖形化成規則圖形.第31課壓軸題:利用弧長公式解決中考數學平面幾何動點軌跡路徑長問題,確定圓心和半徑是關鍵.
  • 續談中考「一次函數」:探動點,說圖像,攻堅壓軸的第三階段
    本次內容是前兩次所談「一次函次」的結尾部分,涉及的知識偏向中考部分,對初學者有一定的難度。或是編寫水平有限,或是篇幅所限,或是初學者不適應,無論哪一種原因,如果您有看不明白之處,請及時查閱相關資料,徹底搞清搞明一次函數的相關內容。九、一次函數與動點探索一次函數中的動點問題是一個難點問題,考試時在壓軸題部分比較常見。
  • 中考數學:四種不同類型的二次函數壓軸題,考前必刷
    中考數學壓軸題,要麼二次函數,要麼幾何,或者將這二者結合,我們稱之為代幾綜合。其實,純二次函數壓軸題(韋達定理的運用、二次方程的計算等結合的題型)在中考中非常少見,一般二次函數壓軸題都會與幾何相結合。5、其他問題:線段比不變、線段倒數和等。下面,我們從福建省的近三年中考數學分析,到底會考哪幾種類型的二次函數壓軸題。二次函數與線段、面積2017年福建省中考數學最後一道大題吐槽:此題無圖無真相!解題的關鍵是正確畫出標準的圖像。為什麼要強調標準,因為圖形越標準,對自己的分析越有利!還可以節約時間!
  • 中考數學壓軸題,動點形成的三角形周長最小值,解題的關鍵是這
    在初中階段,最值問題一直是個難點也是一個重點,它要求學生具有很強的問題分析能力與綜合運用數學知識、數學思想方法解決問題的能力。下面就來解析下動點形成的三角形周長最小值,提煉解析技巧。待定係數法求函數解析式,這是中考必考內容。
  • 中考數學壓軸題,幾何圖形上的動點問題
    提到中考數學壓軸題,估計很多人都會認為必考二次函數綜合題。其實不然,因為幾何圖形上的動點問題也是常考的題型之一。下面就分享幾道往年的中考壓軸題,這些題特殊幾何圖形上的動點問題。2010年廣東省考以矩形為背景的動點問題。
  • 中考數學壓軸題,直角三角形的存在性問題,從三方面學習易有所獲
    人人學有用的數學;不同的人在數學上得到不同的發展。數學課堂致力於考點歸納,解題方法和學習方法總結,為中學生學好數學努力!直角三角形的存在性問題考查學生的探尋能力和分類研究的推理能力,也是近幾年來各市地對學生能力提高方面的一個考查熱點。
  • 中考數學動點問題
    動點問題常常被列為各地中考數學的壓軸題之一,這類問題就是在三角形、矩形、梯形等一些幾何圖形上設計一個或兩個動點,並對這些點在運動變化過程中伴隨的等量關係、變量關係、圖形的特殊狀態、圖形間的特殊關係等進行研究考查.動點問題常集幾何與代數知識於一體,常用到數形結合、分類討論等思想,有較強的綜合性
  • 昆明近10年中考數學壓軸題,難度變化不大,這類題十年六考
    人人學有用的數學;不同的人在數學上得到不同的發展。數學課堂致力於考點歸納,解題方法和學習方法總結,傳播正能量!古有名言:「以史為鏡,可以知興衰;以人為鏡,可以知得失。」對於中考數學壓軸題,我們回顧往年中考真題,不難從中找到一些規律。
  • 初中數學一次函數,圖像動點問題,從不缺席考試的貴客
    一次函數的動點類型題是一個難點問題,各類考試在壓軸題部分非常常見。解決動點問題要有「動中有靜、動靜結合」的解題思路,把握動點的運動軌跡,在動點的「運動」過程中分析圖形的變化情況;需要搞明白動點的運動階段,對應的取值範圍,各階段動點圖形的特點;從而求出函數表達式的變化。
  • 中考數學,代數和幾何綜合題,學生:這是各個地區常見的壓軸題
    中考數學試卷的最後一道題,各個地區有所不同,但代數和幾何綜合類型的還是最多的,這類題目大多都是在直角坐標系當中,運用數形結合的思想,有通過函數的方法得到幾何圖形的性質,也有在幾何圖形中利用代數的知識求解線段長等。
  • 中考數學衝刺:函數壓軸題VS幾何壓軸題,哪個更難?
    函數壓軸題PK幾何壓軸題,哪個更難,更令考生崩潰?函數作為初中數學的一大版塊,在中考數學中所佔的分值絕對是最高的。尤其是函數壓軸題,幾乎年年考,年年讓一大批考生欲哭無淚。究竟函數壓軸題有多難?能讓眾多考生望而生畏?下面精選一道基礎的函數壓軸題,以供參考!
  • 中考數學壓軸題有哪些類型?如何解題,這4種方法最常見
    在數學中,每次考試總會有一道壓軸題,特別是在大考中,壓軸題考查學生的綜合能力,涉及的知識點多,解題時思路難覓,對不少同學來說,壓軸題的難度很大。在初中階段,數學壓軸題難度還沒有那麼高,小星今天整理了壓軸題的幾種常見的解題思路,一起來看看吧。
  • 中考數學:圓綜合大題,壓軸題以下,中等題以上……
    在中考數學中,翻遍100多份的真題,發現以圓作為壓軸題的省份少之又少。而圓作為中考數學的重點幾何版塊,不考的省份一個都沒有!圓,應該用什麼來形容呢?應該算壓軸題以下,中等題以上吧!比如廣東省深圳市的中考數學題,圓作為倒數第二或第一題,難不難我們慢慢分析!
  • 中考數學:圓壓軸題,能為中考畫上圓滿的符號嗎?
    如果圓出現在中考數學的壓軸題中呢?還能為中考畫上一個圓滿的符號嗎?翻看全國各地的中考數學卷,圓作為大題,出現的概率非常高!不過一般都是倒數第3題,難度中等,平時成績不是太差的話,一般都能寫對。但是有些時候,最後一道大題,或者說壓軸題也閃現過圓的身影,比如隱圓。而作為一道完整的圓壓軸題,出現的概率卻有點低!翻看多份試卷之後,才找到以下幾題!
  • 中考數學:直角三角形存在性問題,2種方法教你搞定動點壓軸題
    #中考數學複習#近幾年各地的數學中考中,探索因動點產生的存在性問題頻頻岀現,這類試題的知識覆蓋面較廣, 綜合性較強,題意構思精巧,要求學生有較高的分析問題、解決問題的能力。這類問題識記上是有據可依、有法可解的,在此通過系統的整理,將這類問題的解題策略結合例題進行綜合性的一個闡述,希望能對廣大同學解決此類問題有所幫助那麼,我們今天呢,就講解一下直角三角形存在性問題,到底該如何解決!
  • 中考難點:動點軌跡與路徑最值問題綜合難題,壓箱新寶貝值得收藏
    對初中生來說,「軌跡」是一個比較抽象的問題,但在高中數學中的學習是非常有用的,也是非常重要的。由於軌跡問題滲透著集合、運動和數形結合等重要思想,具有涉及面廣,綜合性強,技能要求高等特點,近年來,越來越多地出現在中考壓軸題中.這類題型與通常給出圖形的幾何證明與計算題不同,需要經歷一個「據性索圖」的推理過程。
  • 2019年中考的6個二次函數壓軸題,你認為哪個最難?
    二次函數壓軸題是中考數學中最常考的一個題型,與函數有關的動態問題是近年來中考的一個熱點問題,動態包括點動、線動和面動三大類。我們來看看2019年各地中考數學中的這6道壓軸題,我們不妨來看看,哪道最難?這題主要考查了待定係數法求函數的解析式、平行四邊形的性質、解直角三角形的應用、相似三角形的性質與判定、角平分線的性質、動點問題探究。
  • 中考難點:說愛動點幾何最值問題不容易,細說之解題思維模型
    最值問題是初中數學的重要內容,也是一類綜合性較強的問題,它貫穿初中數學的始終,是中考的熱點問題。它主要考察學生對平時所學的內容的綜合運用,尤其動點幾何最值問題是中考熱點壓軸問題。幾何動點最值類題型之所以能成為中考數學壓軸題的常考題型,除了題型複雜、知識點多外,更主要是能很好考查一個人運用數學思想方法的能力,如常用的數學思想方法有方程思想、數學建模思想、函數思想、轉化思想、分類討論法、數形結合法等等。幾何動點問題主要是以幾何知識為載體,突出了對幾何基本圖形掌握情況的考查、數學邏輯思維能力和數學表達能力的考查。