用馬爾科夫狀態模型分析揭示脂質自組裝的熱力學和動力學
作者:
小柯機器人發布時間:2020/12/19 14:03:04
復旦大學王文寧和徐昕團隊開發了使用馬爾科夫狀態模型分析來揭示脂質自組裝的熱力學和動力學。相關研究成果發表在2020年12月14日出版的《美國化學會志》。
自組裝在生物學領域中無處不在,已經成為一種簡潔的自下而上的製造新材料的方法。雖然分子動力學(MD)模擬可以通過提供缺失的原子細節來補充實驗,但揭示自組裝系統的熱力學和動力學信息仍然面臨巨大的挑戰。
在該文中,研究人員首次證明馬爾科夫狀態模型分析可以用來描述一個典型的兩親性脂質二棕櫚醯磷脂醯膽鹼(DPPC)在自組裝過程中自由能的變化。根據超過500條軌跡的廣泛MD結果,研究人員得到了溶劑可及表面積和均方根偏差的自由能分布,確定了一個亞穩的交叉柱狀(CC)態和一個扭曲雙層膜的過渡態,其自由能壘為~0.02 kJ mol–1/DPPC脂質,證實了20年來長期存在的一種推測,即在脂質自組裝過程中存在自由能屏障。研究人員的模擬還發現了自組裝早期的兩種中間相結構,發現了兩種從未報導過的通向CC狀態的組裝路徑。進一步的熱力學分析得出了焓項和熵項對自由能的貢獻,證明了焓熵補償的關鍵作用。
研究人員的策略開啟了定量理解一般自組裝過程的大門,並為識別不同自組裝系統中常見的熱力學和動力學模式提供了新的機會,並為實驗提供了新的思路。它也有助於細化各種自組裝系統的力場參數。
附:英文原文
Title: Revealing Thermodynamics and Kinetics of Lipid Self-Assembly by Markov State Model Analysis
Author: Jingwei Weng, Maohua Yang, Wenning Wang, Xin Xu, Zhongqun Tian
Issue&Volume: December 14, 2020
Abstract: Self-assembly is ubiquitous in the realm of biology and has become an elegant bottom-up approach to fabricate new materials. Although molecular dynamics (MD) simulations can complement experiments by providing the missing atomic details, it still remains a grand challenge to reveal the thermodynamic and kinetic information on a self-assembly system. In this work, we demonstrate for the first time that the Markov state model analysis can be used to delineate the variation of free energy during the self-assembly process of a typical amphiphilic lipid dipalmitoyl-phosphatidylcholine (DPPC). Free energy profiles against the solvent-accessible surface area and the root-mean-square deviation have been derived from extensive MD results of more than five hundred trajectories, which identified a metastable crossing-cylinder (CC) state and a transition state of the distorted bilayer with a free energy barrier of ~0.02 kJ mol–1 per DPPC lipid, clarifying a long-standing speculation for 20 years that there exists a free energy barrier during lipid self-assembly. Our simulations also unearth two mesophase structures at the early stage of self-assembly, discovering two assembling pathways to the CC state that have never been reported before. Further thermodynamic analysis derives the contributions from the enthalpy and the entropy terms to the free energy, demonstrating the critical role played by the enthalpy–entropy compensation. Our strategy opens the door to quantitatively understand the self-assembly processes in general and provides new opportunities for identifying common thermodynamic and kinetic patterns in different self-assembly systems and inspiring new ideas for experiments. It may also contribute to the refinement of force field parameters of various self-assembly systems.
DOI: 10.1021/jacs.0c09343
Source: https://pubs.acs.org/doi/10.1021/jacs.0c09343