解一些複雜的因式分解問題,常用到換元法,即對結構比較複雜的多項式,若把其中某些部分看成一個整體,用新字母代替(即換元),則能使複雜的問題簡單化,明朗化,在減少多項式項數,降低多項式結構複雜程度等方面有獨到作用 。
換元法又稱變量替換法 , 是我們解題常用的方法之一 。利用換元法 , 可以化繁為簡 , 化難為易 , 從而找到解題的捷徑 。
換元積分法是求積分的一種方法。它是由鏈式法則和微積分基本定理推導而來的。
在計算函數導數時.複合函數是最常用的法則,把它反過來求不定積分,就是引進中間變量作變量替換,把一個被積表達式變成另一個被積表達式。從而把原來的被積表達式變成較簡易的不定積分這就是換元積分法。換元積分法有兩種,第一類換元積分法和第二類換元積分法。
不定積分的積分公式主要有如下幾類:含ax+b的積分、含√(a+bx)的積分、含有x^2±α^2的積分、含有ax^2+b(a>0)的積分、含有√(a²+x^2) (a>0)的積分、含有√(a^2-x^2) (a>0)的積分、含有√(|a|x^2+bx+c) (a≠0)的積分、含有三角函數的積分、含有反三角函數的積分、含有指數函數的積分、含有對數函數的積分、含有雙曲函數的積分。
您的鼓勵是對我勞動的尊重和信任