一元函數積分學考點(6):有理函數的不定積分

2021-03-01 一刻鐘數學

1.理解原函數與不定積分的概念及其關係,理解原函數存在定理,掌握不定積分的性質。

  2.熟記基本不定積分公式。

  3.掌握不定積分的第一類換元法(「湊」微分法),第二類換元法(限於三角換元與一些簡單的根式換元)。

  4.掌握不定積分的分部積分法。

  5.會求一些簡單的有理函數的不定積分。

(二)定積分

1.理解定積分的概念與幾何意義, 掌握定積分的基本性質。

2.理解變限積分函數的概念,掌握變限積分函數求導的方法。

3.掌握牛頓—萊布尼茨(Newton—Leibniz)公式。

4.掌握定積分的換元積分法與分部積分法。

5.理解無窮區間上有界函數的廣義積分與有限區間上無界函數的瑕積分的概念,掌握其計算方法。

6.會用定積分計算平面圖形的面積以及平面圖形繞坐標軸旋轉一周所得的旋轉體的體積。

這一部分我們來學習簡單的有理函數不定積分的求解方法

   被積分函數是有理函數時,可分為以下三種類型:

因此,有理函數的積分實質上可歸結為求多項式的積分和最簡分式的積分,前者用基本積分公式即可求得,後者可通過湊微分法求出結果。

特別提示:   

     (1)中被積分函數是個假分式,可以化簡為一個多項式加一個真分式的形式,從而求出結果;

   (2)中根據被積分函數的特徵,找到分子、分母的導數關聯,直接使用湊微分法計算出對應結果;

   (3)是典型的需要使用前述待定係數法拆分有理函數的題型。


喜歡,你就大膽說出來⤵️

相關焦點

  • 一元函數積分學考點(10):變限積分函數
    1.理解原函數與不定積分的概念及其關係,理解原函數存在定理,掌握不定積分的性質。  2.熟記基本不定積分公式。
  • 一元函數積分學考點(9):廣義積分與瑕積分
    1.理解原函數與不定積分的概念及其關係,理解原函數存在定理,掌握不定積分的性質。  2.熟記基本不定積分公式。
  • 詳解有理函數不定積分的通用解法
    有理函數不定積分的通用解法雖然複雜、不易理解,但幸運的是,在考試中基本不需要用到有理函數不定積分的通用解法。儘管如此,理解通用解法,對提升解題能力、理解能力都是有益無害。1. 什麼是有理函數不定積分?當被積函數的分子或分母均為自變量的n次多項式時,此時的不定積分為有理函數不定積分。下方左圖是有理函數不定積分的三個例子,下方右圖為非有理函數不定積分的例子。2. 有理函數的四種基本類型積分任何一個有理函數的不定積分,均可化成以下四種基本類型。上文給出的前兩個有理函數不定積分可通過如下過程轉換為基本類型。
  • 2016年數學考研大綱解析:一元函數積分學
    大綱要求:一元函數積分學   1、理解原函數的概念,理解不定積分和定積分的概念。   2、掌握不定積分的基本公式,掌握不定積分和定積分的性質及定積分中值定理,掌握換元積分法與分部積分法。   3、會求有理函數、三角函數有理式和簡單無理函數的積分。   4、理解積分上限的函數,會求它的導數,掌握牛頓-萊布尼茨公式。   5、了解反常積分的概念,會計算反常積分。
  • 從認知的角度分析有理函數不定積分為什麼難學?
    從認知的角度分析有理函數不定積分為什麼難學?有理函數的不定積分常常會被我們當作解決不定積分最終「模型」,其他的各類函數(除了原函數不是初等函數)都會通過各種變換將其轉換為有理函數來解決。一方面,有理函數的不定積分總是可以解出來的,這給我們帶來了很大的「安全感」。
  • 2018考研數學知識點解讀:一元函數積分學
    2018數學考試大綱已公布,下面結合新考試大綱的要求,來解析考研數學一元函數積分學的考察方式和備考中需要重點掌握的知識點。   一、大綱整體要求   大綱中要求,理解原函數的概念,理解不定積分的概念,掌握不定積分的的基本公式,掌握不定積分的積分方法,主要是換元法和分部積分法。關於一元積分學這章節還包括:定積分的定義,性質;微積分基本定理;反常積分以及定積分的應用這幾個部分。這幾個部分各有各的側重點。
  • 高數學習—— 一元函數積分學的快樂
    大家好,這段時間我並沒有荒廢時間,做了自己認為有意義的幾件事:①改變投資思路,及時止盈②項目緊急時,提高專注力③從學習中尋找快樂,認識到學習(任何形式)以及能力提升是螺旋上升的 下面從高數的一元函數積分學說起
  • 積分學的進階之路——積分向多元函數的推廣
    多元函數積分學是定積分概念的推廣,包括二重積分、三重積分、曲線積分和曲面積分。它們所解決的問題的類型不同,但解決問題的思想和方法是一致的,都是以「分割、近似、求和、取極限」為其基本思想,它們的計算最終都歸結為定積分的計算。
  • 不定積分 . 有理函數積分(類型) + 四類最簡分式 + 例題分析 + 經典例題( 101 ~ 105 )
    *所選題目源自資料《高等數學(高等教育,第四版)》《高等數學(同濟大學)》《微積分(中人大,第四版)》《概率論與數理統計(浙大,四版)》《概率論與數理統計(中國農業大學)》《線性代數(工程數學,同濟大學)》《線性代數(中人大,第四版)》《複變函數與積分變換(高等教育)》。
  • 數學分析第八章《不定積分》備考指南
    問君能有幾多愁,不定積分不會求!這是整個第八章比較慘澹的基調!弱弱問君,什麼叫不定積分?結合上述兩個定義不難看出,不定積分實際是求導的逆運算,即求被積分函數的原函數。截止到目前,同學們對計算應該有個明確地認識,計算不僅僅拘泥於中小學的關於數的加減乘除運算,還包括求極限,導數,不定積分,定積分,反常積分,數項級數的和,冪級數的和函數,重積分,線面積分,行列式,逆矩陣,特徵值,特徵向量,Jordan標準型等等各種高檔次的運算!所有這些運算中,最能考察一個人的計算能力,非不定積分莫屬!
  • 談論不定積分及其求法
    一、原函數不定積分的概念原函數的定義: 如果區間I上,可導函數F(x)的導函數為f'(x),即對任一x∈I都有 F'(x)=f(x) 或 dF(x)=f(x) dx那麼函數F(x)就稱為f(x)(或 f(x) dx)在區間 I 上的一個原函數。
  • 揭開原函數、不定積分、定積分的神秘面紗!
    原函數、不定積分、定積分從定義上看似不難理解,但是其中存在很多的難點和坑,大家都知曉嗎?1.原函數、不定積分、定積分的含義工欲善其事,必先利其器。欲徹底掌握其中的難點,首先要清楚原函數、不定積分、定積分的含義,通俗點講,原函數、不定積分、定積分的含義如下:原函數:如果函數F(x)在定義域內可導,且導函數為f(x),則稱F(x)為f(x)的一個原函數。不定積分:若函數f(x)存在原函數,則f(x)所有原函數的集合稱為不定積分。換句話說,不定積分表示函數f(x)所有的原函數。
  • 高等數學 | 有理分式積分技巧
    本節介紹一下有理分式的拆項與積分技巧。 求不定積分的主要方法有「拆、變、湊、換、分、套」。「拆」,即將被積函數拆項,把積分變為兩個或幾個較簡單的積分。「變」,即代數恆等變形:加一項減一項、乘一項除一項、分子分母有理化、提取公因子;配完全平方:根號下配完全平方、分母配完全平方等;「湊」,即湊微法(第一類換元法)。「換」,即第二類換元法(三角代換、倒代換、指數代換法等)。
  • 數研課堂|不定積分的計算
    )將被積函數化為有理函數積分,經過多次分部積分可以得到循環的式子,參考下面的例子:得到含三角函數/反三角函數的不定積分(1)求(6)被積函數含有反三角函數,法一是分部積分法,法二是變量替換,令新變量等於反三角函數,最後化為有理函數積分.
  • 持續學習:數學分析之實數集理論和不定積分
    在I上的一個原函數,且{Φ(x)+C|C∈R}就是f(x)在I上的全部原函數不定積分運算性質-線性性質:設f(x) ,g(x)在I上都有原函數,α,β為兩任意實常數,則αf(x)+βg(x)在I 上也有原函數 且∫[αf(x)+βg(x)]dx =α∫f(x)dx+β∫g(x)dx基本積分公式,絕大部分都是高中學過的,在此不表第2節,不定積分的計算,方法定理只有兩三種,看似簡單
  • 實變函數第五章《微分與不定積分》
    本講義主要參考周民強《實變函數論》[1],今天開始我們的第五章《微分與不定積分》的講解,重點是要在Lebesgue積分理論中推廣微積分基本定理,並給出萊布尼茨公式成立的充要條件,若的不定積分可寫成如下形式
  • 這麼變態的不定積分原來還可以這樣解
    下面的不定積分就是小編上期留下來的題目:1.不推薦的萬能公式法儘管小編從來沒用過萬能公式法,但是小編在這裡還是先用一次萬能公式法來解答上面這道題,這是因為在三角替換中,有一些非常值得大家注意的細節,小編藉此機會把這些容易被忽視的細節拎出來。
  • 詳解萬能公式在不定積分中的應用
    在求不定積分中,對於只包含正弦、餘弦、正切、餘切,而不包含其他初等函數的被積函數,可以用萬能公式,化三角函數為有理函數,進而求解不定積分。1. 初用萬能公式對習題1直接套用如下萬能公式。靈活運用萬能公式若像習題1直接套用萬能公式,會導致高次的、複雜的有理函數。當化簡到上述這一步時,很難進行下去了。事實上,在用萬能公式時,謹記一點:萬能公式的目的是將三角函數的不定積分轉化為低次的、不複雜的有理函數不定積分。如果通過萬能公式的轉化,得出的新的不定積分更複雜,則要重新觀察原不定積分:1)是否可以先拆分,然後再用萬能公式;2)是否該用其他方法。
  • 高等數學入門——利用基本積分公式和性質計算不定積分的方法和典型例題
    上一節我們介紹了基本積分公式以及不定積分的兩個基本性質,由此可以計算一些簡單的不定積分,本節我們來介紹一些相關的典型例題及習題。不定積分的計算通常技巧性較強,需要讀者多總結方法,多做練習。(由於公式較多,故正文採用圖片形式給出。)
  • 不定積分小技巧
    作為數分上冊的收尾,數分下冊的基礎,今天,我們再來回顧一下不定積分的一些解題技巧。(部分內容來自知乎網)常見積分法:1.湊微分法(書裡叫第一換元法)2.換元法(第二換元)3.分部積分法4.有理函數積分法(一)湊微分法湊微分法也叫第一類換元法,但是湊微分這個名字,更能說明它的本質特徵,因為他不是真正意義上的換元。