-
π是一個無理數,那麼圓的周長或直徑也應該是無理數,是這樣嗎?
2019-08-12 21:02:45 來源: 宇宙時空 舉報 首先,π確實是無理數
-
世界上第一個證明π是無理數的方法——高中生也能理解
此方法利用三角函數的泰勒級數展開,巧妙的反覆運用倒數技巧得到了tan x的連分數表示,然後證明了這個連分數是一個無理數。據信,這個也世界上第一個證明π是無理數的方法。此方法簡潔易懂,即使從現在的觀點來看,其思路也非常具有啟發性。
-
無理數是高維空間的數字嗎?
無理數可能是高維世界的數字。在高維世界裡,無理數是非常簡單的,它之所以無限不循環,只是低緯世界的一個錯覺。
-
√2的√2次方是無理數嗎?
周春荔先生在一篇文章中,談到了一個例題:「證明存在兩個無理數x,y,使z=xy是有理數。
-
「π日」說π:這麼複雜的一個數,是什麼來歷?
比如,π是無理數——你只能不斷地靠近、卻永遠無法達到「真實」。算π算了好幾千年,卻發現「無理」竟然是深刻本性,π的神秘或許因此又多了一分。而且,它不僅僅是無理數(根號2也是無理數),還是「超越數」——它並不能表達為任何一個有理代數方程的根,跟整個有理數的世界都是割裂的,獨立高冷到一定境界。
-
圓周率π是一個無限不循環的無理數,用它計算出來圓面積準確嗎?
小學時對我們大多數人都灌輸了一件事,圓的面積是圓周率π乘以半徑的平方。只需知道圓的半徑,我們就可以計算出圓的面積。儘管看上去這似乎是小菜一碟,但我們忘記了一件事。π是一個無限不循環的無理數,因此,無論我們在計算圓的面積時考慮到多少位數的π,它都不可能真正精確。
-
圓周率「π」是真的算不盡嗎?
換言之,π等於圓的周長除以直徑。反過來,圓的周長等於π乘以直徑。無論圓的大小,π總是同一個數。 在1761年,德國數學家約翰·海因裡希·蘭伯特首次證明了π是一個無理數,即無盡不循環小數,它無法用兩個整數的比值來表示。這意味著,π的小數位將會無限延續下去,小數點後面有無限多個不循環數字。因此,π沒有一個精確的值。
-
如何證明圓周率為無理數?
但直到兩百多年前,圓周率是無理數才被德國數學家蘭伯特所證明。所謂的無理數是指無法用分數表示的數,只能寫作無限不循環的小數。當年,蘭伯特發現,tan(x)可用如下的連分式展開表示:然後,他證明了倘若x是非零的有理數,那麼,上述表達式肯定就是一個無理數。
-
「π日」說π:這麼複雜的一個數,誰算的?咋算的?
更重要的不是位數 是它本身 這個時代,數學家們對π的其它特性的興趣,遠比π有多少位要濃厚。 比如,π是無理數——你只能不斷地靠近、卻永遠無法達到「真實」。算π算了好幾千年,卻發現「無理」竟然是深刻本性,π的神秘或許因此又多了一分。
-
匪夷所思的事實:圓周率π竟是一個變量
圓周率π是一個無理數,因此3.14159…小數點後面的數字是無限不循環的,也可以認為它們的出現是「隨機」的。數學家們通過不懈的努力已經將圓周率算到了小數點後的31.4萬億位,這正印證著250多年前圓周率π被證明是一個無理數
-
無理數的出現導致了數學危機?或許無理數比我們想像的重要!
數學很簡單,我們每天都在熟練使用著數學;數學也非常難,一個哥德巴赫猜想讓無數數學家費勁心力也無從解答!事實上,數學的發展並不是一帆風順的,數學歷史上一共經歷了三次巨大的危機,一度動搖了數學的根基,其中無理數的出現就是其中之一。
-
π和e
如果能夠確定x=e是極大值點或極小值點,那麼便可以由π位於e附近(π>e),判斷出「e的e分之1次冪」與「π的π分之1次冪」的大小。為了確定在x=e時,f(x)取極大值還是極小值,需要求f(x)的二階導數。
-
你們要的證明來了——證明歐拉數e是無理數
之前寫過一篇文章證明了圓周率π是無理數,有小夥伴問我能不能證明自然數e也是無理數。今天,在這篇文章中,我將描述兩個簡單的證明歐拉數e≈2.71828是無理數。第一個證明是由法國數學家和物理學家約瑟夫·傅立葉提出的。第二個證據是法國數學家查爾斯·埃爾米特提出的。
-
世界上第一個證明π是無理數的方法—高中生也能理解
本文給出一個高中生也能看懂的證明方法,由瑞典數學家約翰·海因裡希·蘭伯特在 1761 年給出。此方法利用三角函數的泰勒級數展開,巧妙的反覆運用倒數技巧得到了 的連分數表示,然後證明了這個連分數是一個無理數。據信,這個也世界上第一個證明 是無理數的方法。此方法簡潔易懂,即使從現在的觀點來看,其思路也非常具有啟發性。
-
π可以計算嗎?如果你計算一下會怎麼樣?或者揭開宇宙的面紗奧秘
π是一個非常常見的數學常數,因為我們周圍都有圓圈,Pi是用來計算圓的常數,Pi用「π」表示,其近似值為3.1415926,然而我們通常用3.14來表示圓周率,在計算圓時也會用到,根據人類構造的數學系統,計算出PI是一個無理數,無理數是一組數字,在一個數值的小數點後有無限個數,由於Pi
-
困擾數學家近80年的無理數難題被證明了-虎嗅網
但實際上,在數字的王國中,我們熟悉的有理數是少數的存在,絕大多數都是無理數。無理數是那些沒有盡頭、可以永無止盡地持續下去的數字,比如π、√2等等,它們不能被寫成分數,無處不在卻又難以捉摸。如果我們不能簡單、準確地表述無理數,那麼我們可以如何近似?通常,當我們需要用到這些數字時,會四捨五入地取到它們的某一位小數,例如π通常被取為3.14,等於157/50。
-
3·14世界圓周率日,為π過一個生日
推薦閱讀:「我懂你」,用古詩詞的23種說法,真的太美了!
-
無理數引發的第一次的數學危機,兩千年後才平息!
有了數字作為基礎,才會陸陸續續學會了公式,然後就真的開始學習了數學。直到後來,我們的數學能力發展一定程度之後,就發現,其實數學裡的數字只有1,2,3是不夠用的。於是出現了小數,分數,其中關於分數的研究,中國古人開創了先河,大約比歐洲早了1400多年。
-
圓周率π,不得不說的一個數
圓周率與圓周率的計算+圓周率簡介圓周率π(Ratio of circumference to diameter;Pi)是圓的周長與直徑的比值,一般用希臘字母π表示,是一個在數學及物理學中普遍存在的數學常數。π也等於圓形之面積與半徑平方之比。
-
黃金比φ與圓周率π有關係嗎?
最近有幾位長期關注我文章的朋友提到讓我寫一寫有關黃金數φ與圓周率π之間的關係。我個人的觀點是兩者沒有本質的關係。這點我深信不疑。那今天為什麼還要在這裡寫這個題目呢?也是碰巧最近看到有寫兩者關係的內容,所以一時產生了興趣,迫切想知道兩者是怎麼聯繫起來的,是不是真的有一種內在的關係。下面我就把我所看到的介紹給您,由您自己判斷兩者的這種關係是一種什麼類型的關係。