「世間萬物和自然規律被黑夜隱藏,上帝說,「讓牛頓降生吧」,於是,光明降臨世界。」——英國18世紀上半期最出名的詩人亞歷山大·蒲柏 Alexander Pope
牛頓是生活在地球上的影響最大的科學家之一。他是遺腹子,生於伽利略逝世的那一天。
牛頓少年時代即表現出手工製作精巧機械的才能。雖然他是個聰明伶俐的孩子,但並未引起他的老師們的注意。
成年時,母親令其退學,因為希望兒子成為一名出色的農夫。十分幸運的是他的主要天賦不滿足於他在農業方面發揮,因此,他18歲時入劍僑大學,極快地通曉了當時已知的自然與數學知識,之後轉入個人的專門研究。
自21歲至27歲,奠定了某些學科理論基礎,導致以後世界上的一次科學革命。他的第一個轟動科學世界的發現就是光的本質。經過—系列的嚴格試驗,牛頓發現普通白光是由七色光組成的。經過—番光學研究,製造了第一架反射天文望遠鏡;這架天文望遠鏡一直在天文臺使用到今天。
萊布尼茨曾說:「在從世界開始到牛頓生活的時代的全部數學中,牛頓的工作超過了一半。」的確,牛頓除了在天文及物理上取得偉大的成就,在數學方面,他從二項式定理到微積分,從代數和數論到古典幾何和解析幾何、有限差分、曲線分類、計算方法和逼近論,甚至在概率論等方面,都有創造性的成就和貢獻。
牛頓在數學上的成果要有以下四個方面:
發現二項式定理
在一六六五年,剛好二十二歲的牛頓發現了二項式定理,這對於微積分的充分發展是必不可少的一步。二項式定理把能為直接計算所發現的:
等簡單結果推廣如下的形式:
二項式級數展開式是研究級數論、函數論、數學分析、方程理論的有力工具。在今天我們會發覺這個方法只適用於n是正整數,當n是正整數1,2,3,....... ,級數終止在正好是n+1項。如果n不是正整數,級數就不會終止,這個方法就不適用了。但是我們要知道那時,萊布尼茨在一六九四年才引進函數這個詞,在微積分早期階段,研究超越函數時用它們的級來處理是所用方法中最有成效的。
創建微積分
牛頓在數學上最卓越的成就是創建微積分。他超越前人的功績在於,他將古希臘以來求解無限小問題的各種特殊技巧統一為兩類普遍的算法--微分和積分,並確立了這兩類運算的互逆關係,如:面積計算可以看作求切線的逆過程。
那時萊布尼茲剛好亦提出微積分研究報告,更因此引發了一埸微積分發明專利權的爭論,直到萊氏去世才停熄。而後世己認定微積是他們同時發明的。
微積分方法上,牛頓所作出的極端重要的貢獻是,他不但清楚地看到,而且大贍地運用了代數所提供的大大優越於幾何的方法論。他以代數方法取代了卡瓦列裡、格雷哥裡、惠更斯和巴羅的幾何方法,完成了積分的代數化。從此,數學逐漸從感覺的學科轉向思維的學科。
微積產生的初期,由於還沒有建立起鞏固的理論基礎,被有受別有用心者鑽空子。更因此而引發了著名的第二次數學危機。這個問題直到十九世紀極限理論建立,才得到解決。
引進極坐標,發展三次曲線理論
牛頓對解析幾何作出了意義深遠的貢獻,他是極坐標的創始人。第一個對高次平面曲線進行廣泛的研究。牛頓證明了怎樣能夠把一般的三次方程:
所代表的一切曲線通過標軸的變換化為以下四種形式之一:
在《三次曲線》一書牛頓列舉了三次曲線可能的78種形式中的72種。這些中最吸引人;最難的是:正如所有曲線能作為圓的中心射影被得到一樣;所有三次曲線都能作為曲線
的中心射影而得到。這一定理,在1973年發現其證明之前,一直是個謎。
牛頓的三次曲線奠定了研究高次平面線的基礎,闡明了漸近線、結點、共點的重要性。牛頓的關於三次曲線的工作激發了關於高次平面曲線的許多其他研究工作。
推進方程論,開拓變分法
牛頓在代數方面也作芔了經典的貢獻,他的《廣義算術》大大推動了方程論。他發現實多項式的虛根必定成雙出現,求多項式根的上界的規則,他以多項式的係數表示多項式的根n次冪之和公式,給出實多項式虛根個數的限制的笛卡兒符號規則的一個推廣。
牛頓在還設計了求數值方程的實根近似值的對數和超越方程都適用的一種方法,該方法的修正,現稱為牛頓方法。
牛頓在力學領域也有偉大的發現,這是說明物體運動的科學。第—運動定律是伽利略發現的。這個定律闡明,如果物體處於靜止或作恆速直線運動,那麼只要沒有外力作用,它就仍將保持靜止或繼續作勻速直線運動。這個定律也稱慣性定律,它描述了力的一種性質:力可以使物體由靜止到運動和由運動到靜止,也可以使物體由一種運動形式變化為另一種形式。此被稱為牛頓第一定律。
力學中最重要的問題是物體在類似情況下如何運動。牛頓第二定律解決了這個問題;該定律被看作是古典物理學中最重要的基本定律。牛頓第二定律定量地描述了力能使物體的運動產生變化。
它說明速度的時間變化率(即加速度a與力F成正比,而與物體的質量裡成反比,即a=F/m或F=ma;力越大,加速度也越大;質量越大,加速度就越小。力與加速度都既有量值又有方向。加速度由力引起,方向與力相同;如果有幾個力作用在物體上,就由合力產生加速度,第二定律是最重要的,動力的所有基本方程都可由它通過微積分推導出來。
此外,牛頓根據這兩個定律制定出第三定律。牛頓第三定律指出,兩個物體的相互作用總是大小相等而方向相反。對於兩個直接接觸的物體,這個定律比較易於理解。書本對子桌子向下的壓力等於桌子對書本的向上的託力,即作用力等於反作用力。引力也是如此,飛行中的飛機向上拉地球的力在數值上等於地球向下拉飛機的力。牛頓運動定律廣泛用於科學和動力學問題上。
更多精彩內容 請點擊 網易探索頻道 查看更多圖片