有機半導體熱電材料性能指數翻倍

2020-12-01 科學網

 

據美國《每日科學》網站5月5日報導,熱電材料是一種能將熱能和電能相互轉換的功能材料,目前的有機半導體熱電材料的熱電轉化效率一般比較低。美國科學家最新發現了一種方法,將目前表現最好的有機半導體熱電材料的效率提高了70%。研究發表在5月5日出版的《自然—材料學》雜誌上。

 

現在最高效的熱電材料一般由鉍、碲、硒等相對來說比較少見的無機半導體組成,這些元素昂貴、易碎,而且有些還有毒。有機半導體不僅便宜、儲量豐富而且輕便、堅固,但一直以來,這類熱電材料在熱—電轉化過程中的表現差強人意。無機半導體熱電材料的熱電轉化效率幾乎是有機半導體熱電材料的4倍。

 

科學家們一般用「性能指數」這一值來反映材料的熱電轉化效率。目前,在室溫下,最高效的無機熱電材料的「性能指數」接近1;而有機半導體熱電材料的「性能指數」僅為0.25。

 

現在,科學家們將最好的有機半導體熱電材料聚3,4-亞乙二氧基噻吩-聚苯乙烯磺酸(PEDOT:PSS)的「性能指數」提高了70%,達到0.42,為目前最好的無機半導體熱電材料的一半。

 

PEDOT:PSS由PEDOT和PSS兩種物質構成,PEDOT是EDOT(3,4-亞乙二氧噻吩單體)的聚合物,PSS是聚苯乙烯磺酸鹽。PEDOT:PSS以前被用作有機發光二極體(OLED)、有機太陽能電池等設備的透明電極;也被用來做膠片等材料的防靜電劑。

 

科學家們一般採用摻雜這一過程來增加材料的導電能力,當朝某種材料添加攙雜劑時,摻雜劑就給主材料提供了電載體,每個添加進去的電載體都能增強原材料的導電能力。然而,當在PEDOT中摻雜PSS時,實際上只有很少量的PSS同PEDOT結合,其餘的PSS分子並沒有離子化,化學活性也不強。研究人員發現,這些過量的PSS分子會顯著抑制PEDOT:PSS的導電能力和熱電性能。

 

該研究的領導者、密西根大學機械工程、電子工程和計算機副教授凱文·派普表示:「不活躍的PSS分子會進一步將PEDOT分子推開,使電子更難在PEDOT分子之間跳躍。離子化的PSS分子會提高PEDOT:PSS的導電性,而沒有離子化的PSS分子則會降低其導電性。」

 

為了提高PEDOT:PSS的熱電效率,科學家們在納米尺度對這種材料的結構進行了調整,也使用了一些溶劑將那些未被離子化的PSS分子從該材料中移走,從而顯著提高了其導電能力和熱電轉化效率。

 

這種特殊的有機熱電材料將在溫度達到250華氏度(約121攝氏度)時開始工作。派普表示:「最新技術有望讓我們製造出一種柔性薄片,能包裹某個熱物體來發電或者製冷。」(來源:科技日報 劉霞)

更多閱讀

 

 

 

 

 

特別聲明:本文轉載僅僅是出於傳播信息的需要,並不意味著代表本網站觀點或證實其內容的真實性;如其他媒體、網站或個人從本網站轉載使用,須保留本網站註明的「來源」,並自負版權等法律責任;作者如果不希望被轉載或者聯繫轉載稿費等事宜,請與我們接洽。

相關焦點

  • 有機熱電材料:未來綠色能源新翹楚
    有機熱電材料:未來綠色能源的新翹楚熱電效應是一種基本的並且普遍存在的能量轉換現象。基於這一效應,利用溫差發電以及在電場驅動下製冷都能實現。以π-共軛分子材料為代表的有機熱電材料具備優異的溶液加工性、柔韌性和低熱導率,展現突出的熱電性能。中國學者在這一領域發揮引領性作用。
  • 碘化銫錫半導體熱電性能獨特
    原標題:碘化銫錫半導體熱電性能獨特   美國研究人員發現,一種名為碘化銫錫(CsSnI3)的晶體半導體材料具有獨特的熱電性能,能在保持高電導率的同時,隔絕大部分熱量傳遞。他們在日前出版的美國《國家科學院學報》上發表文章指出,這種材料的熱電性質獨特,應用前景十分廣闊。
  • 有機熱電材料進展
    有機聚合物熱電材料是一類新興的可實現熱與電直接轉換的清潔能源材料,這類材料可溶液加工、質輕價廉、具有優異的柔韌性,在可穿戴電子器件領域具有潛在應用價值。與無機熱電材料相比,聚合物熱電材料種類匱乏、熱電轉換性能低,主要原因是缺乏對分子結構與熱電性能關係的深入認識。
  • 上海矽酸鹽所在柔性有機/無機熱電複合材料研究中取得進展
    傳統無機熱電材料具有優異的熱電性能,但不具備柔性功能;而有機熱電材料雖具有良好的柔性和彎曲性能,但熱電性能極低。有機/無機複合熱電材料可綜合無機材料的熱電高性能和有機材料的良好彎曲性能,成為近年來的研究熱點。
  • 化學所利用有機熱電材料實現電致製冷
    熱電材料可以實現溫差和電能之間的直接轉換,是重要的能源材料之一。作為新型熱電材料體系,有機熱電材料在柔性、低成本供電器件和自供電傳感器方面具有廣闊的應用前景(Natl. Sci. Rev. 2016, 3, 269.
  • 集有機、無機材料優點於一體,我國學者提出無機塑性新型半導體新概念
    集微網消息,上海交通大學官方消息顯示,近日,上海交通大學與中國科學院上海矽酸鹽研究所等單位合作,在無機塑性半導體領域取得重大突破,史迅與陳立東等開創性地提出無機塑性新型半導體新概念,在具有優異電學性能的無機半導體中實現良好可加工和變形能力,將有機材料和無機材料的優點合二為一
  • 南科大郭旭崗團隊n型有機和高分子半導體材料研究取得系列成果
    由於電子器件中普遍存在的p-n結,高性能的n型和p型有機和高分子半導體對整個有機電子領域的發展都不可或缺。然而,相比於p型(空穴傳輸型)有機半導體,由於高度缺電子結構單元的缺乏、空間位阻效應及合成上的面臨的挑戰,對n型(電子傳輸型)有機半導體材料的研究較少,高性能的n型高分子半導體材料稀缺,發展高性能有機和高分子半導體是有機電子領域面臨的巨大挑戰,對推進有機電子領域的發展至關重要。
  • 【中國科學報】中科院寧波材料所研製出性能改善的熱電材料
    記者日前從中科院寧波材料技術與工程研究所獲悉,該所研究人員通過材料組成設計以及製備理念創新,開展了一系列有特色的工作,成功實現了顯微結構及電熱輸運調控,並由此製備了一系列性能改善的熱電材料。  目前,該研究的部分基礎成果已經發表,並獲授權發明專利四項。這些工作將為進一步改善熱電性能提供有力幫助,並為熱電轉換應用奠定材料基礎。
  • 南科大郭旭崗團隊n型有機和高分子半導體材料研究連發5篇頂刊
    由於電子器件中普遍存在的p-n結,高性能的n型和p型有機和高分子半導體對整個有機電子領域的發展都不可或缺。然而,相比於p型(空穴傳輸型)有機半導體,由於高度缺電子結構單元的缺乏、空間位阻效應及合成上的面臨的挑戰,對n型(電子傳輸型)有機半導體材料的研究較少,高性能的n型高分子半導體材料稀缺,發展高性能有機和高分子半導體是有機電子領域面臨的巨大挑戰,對推進有機電子領域的發展至關重要。
  • 「聲子液體」優化熱電性能
    審稿人對該文給予高度評價,認為其拓展了已有的「聲子玻璃—電子晶體」概念至「聲子液體—電子晶體」,為熱電材料的研究方向提供了新的可能性。 史迅介紹說,熱電轉換技術利用半導體材料的塞貝克(Seebeck)效應和帕爾貼(Peltier)效應實現熱能與電能直接相互轉化,在工業餘熱和汽車尾氣廢熱發電等領域具有重要而廣泛的應用。
  • 上海矽酸鹽所有機熱電材料研究取得進展---中國科學院
    中 小】 語音播報   有機聚合物熱電材料是一類新興的可實現熱與電直接轉換的清潔能源材料與無機熱電材料相比,聚合物熱電材料種類匱乏、熱電轉換性能低,主要原因是缺乏對分子結構與熱電性能關係的深入認識。化學摻雜是提高聚合物導電能力、調控其熱電性能的主要手段,目前聚合物半導體材料摻雜效率低,且高濃度摻雜容易破壞聚合物自身堆積從而顯著降低載流子遷移率,不僅不能獲得高電導同時降低了澤貝克係數,而且限制熱電器件性能的提升。
  • 寧波材料所熱電材料能帶工程和性能優化研究獲系列進展
    熱電材料是一類能夠實現熱電與電能直接相互轉換的功能材料,可用於半導體製冷、高精度溫控和溫差發電。為提升熱電轉換效率,需要在保持較低熱導率的基礎上儘可能提高材料的功率因子S2σ。然而Seebeck係數S和電導率σ之間具有本徵關聯性,通常難以實現功率因子的大幅度提升。利用「能帶工程」能夠在一定程度上實現S和σ的解耦合,以獲得較高的功率因子和轉換效率。
  • 上海矽酸鹽所等提出無機柔性熱電材料研究新方向
    柔性熱電能量轉換技術可將環境中無處不在的溫差轉化為電能輸出,在柔性電子等領域具有廣闊的應用前景。然而,目前的高性能無機熱電材料均為脆性材料,不具備柔性功能,將其微型化併集成於柔性基板可獲得一定程度的彎曲性能,但在大彎曲或大變形下極易發生斷裂;而有機熱電材料雖然具有良好的柔性和彎曲性能,但載流子遷移率遠低於無機材料,難以實現高效的能量轉換與電能輸出。
  • 首個具有優異柔性和熱電性能的無機非晶材料
    傳統的無機晶體熱電材料雖然具有優異的熱電性能,但是塑性和可加工性差。本文發現了迄今為止首個不僅具有優異塑性變形性能,而且具有優良電輸運性能和熱電性能的無機非晶材料,同時該新材料尚具有巨大的性能優化空間,對熱電材料、非晶材料乃至半導體材料領域都具有重要科學意義。
  • 有機半導體導電性會受到水的影響!
    林雪平大學有機電子實驗室設計的熱電有機電晶體(圖片來源:Thor Balkhed)林雪平大學開發的基於n型有機電化學電晶體的互補邏輯電路(圖片來源:Thor Balkhed)林雪平大學有機電子實驗室開發的基於纖維素的傳感器。
  • 有機半導體的發展介紹|有機半導體|器件|電晶體|半導體
    有機半導體是由有機分子組成的材料,特殊的結構讓其具有導電性,其導電性能介於導體與絕緣體之間的材料。與金屬和絕緣體相比,半導體材料的發現是最晚的,直到20世紀30年代,當材料的提純技術改進以後,半導體的存在才真正被學術界認可。
  • 「聲子液體」助熱電材料實現突破
    「液態」特徵的離子來降低熱導率和優化熱電性能,突破晶格熱導率在固態玻璃或晶態材料上的限制。審稿人對該文給予高度評價,認為其拓展了已有的「聲子玻璃—電子晶體」概念至「聲子液體—電子晶體」,為熱電材料的研究方向提供了新的可能性。 史迅介紹說,熱電轉換技術利用半導體材料的塞貝克(Seebeck)效應和帕爾貼(Peltier)效應實現熱能與電能直接相互轉化,在工業餘熱和汽車尾氣廢熱發電等領域具有重要而廣泛的應用。
  • 先進熱電材料與器件設計的研究進展
    綜述總結了熱電研究領域裡的最新研究熱點,包括數據科學輔助分析,低維熱電材料與器件設計,自旋熱電效應,高熵熱電合金,離子熱電,機械性能強化機制,先進熱電性能分析測試手段,基於無機以及無機/有機複合熱電材料的柔性器件設計,器件服役穩定性及評價方法,以及熱電發電及製冷的最新應用。
  • 無機柔性熱電新材料研製成功
    中科院上海矽酸鹽研究所研究人員史迅、陳立東、孫宜陽、仇鵬飛等和美國克萊門森大學教授賀健合作,開發出基於硫化銀(Ag2S)柔性半導體的新型高性能無機柔性熱電材料和器件
  • 半導體材料的性能分析及其應用
    半導體材料豐富多樣,我們在半導體材料上有著多種選擇,根據不同的要求選擇相應的半導體材料。3傳統半導體材料的應用及局限性近幾年來,社會信息不斷發展,電子工業技術也發展得十分樂觀,在這樣的社會背景之下,單一的材料已經不能滿足人們的需求了,我們需要不斷的提升這方面的能力,然後從各方面共同發展,促進我國的國民經濟增長,為了滿足漸漸以來的社會增長情況,因此具有一批半導體的有機功能的材料,也逐漸被人們開發出來,在這個過程中也應用到了各個領域,有機半導體材料有很多的優點