勾股定理專題練習

2021-03-01 向北數學

勾股定理

1、勾股定理的證明是論證幾何的發端;

2、勾股定理是歷史上第一個把數與形聯繫起來的定理,即它是第一個把幾何與代數聯繫起來的定理;

3、勾股定理導致了無理數的發現,引起第一次數學危機,大大加深了人們對數的理解;

4、勾股定理是歷史上第—個給出了完全解答的不定方程,它引出了費馬大定理;

5、勾股定理是歐氏幾何的基礎定理,並有巨大的實用價值.這條定理不僅在幾何學中是一顆光彩奪目的明珠,被譽為「幾何學的基石」,而且在高等數學和其他科學領域也有著廣泛的應用。

考點一、已知兩邊求第三邊

1.已知直角三角形的兩邊長為3、2,則第三條邊長是_________

2.在數軸上作出表示根7的點.

考點二、利用列方程求線段的長

1.如圖,矩形ABCD沿對角線BD對摺,若AB=4,BC=3,求△DEF的面積。

2.如圖,矩形ABCD中,E為BC邊的中點,將△ABE沿AE對摺,點B的對應點為B',連接CB',若AD=4,AB=3,求CB'長.

考點三、構造直角三角形解決問題

1.如圖:△ABC中,∠BAC=90°,AB=AC,點D、E為BC邊上兩點,且∠DAE=45°,若BD=4,DE=5,求AB長.

2.如圖,四邊形ABCD中,∠ABC=90°,AC=BD,AC⊥BD於E,若AB=4,AD=5,求DC的長。

考點四:面積問題

1.如圖,Rt△ABC中,∠BAC=90°,AC=3,AB=4.分別以AB、AC、BC為邊在BC的同側作正方形ADEB,AMNC,BFHC,四塊陰影部分的面積分別為S1,S2,S3,S4.則S1+S2+S3+S4等於______

2.如圖,Rt△ABC中,∠BAC=90°,AC=3,AB=4.分別以AB、AC、BC邊為直徑,在BC的同側作三個半圓,則陰影部分面積為_________

 

3.如圖,Rt△ABC中,∠BAC=90°,AC=3,AB=4.分別以AB、AC、BC為邊在BC的兩側作正方形ADEB,AFGC,BMHC,則S1+S2+S3等於_____

 

4.如圖,是我國古代著名的「趙爽弦圖」的示意圖,它是由四個全等的直角三角形圍成的.若兩直角邊AC=4,BC=6,現將四個直角三角形中邊長為6的直角邊分別向外延長一倍,延長後得到下圖所示的「數學風車」,則該「數學風車」所圍成的總面積是_____ .

 

考點五:數形結合

1. 利用勾股定理求出函數的最小值.

 

2. 利用勾股定理比較

附:如下圖:S1+S2=S3



相關焦點

  • 中考數學專題系列三十四:勾股定理在摺疊問題中的應用
    中考數學專題系列三十四:勾股定理在摺疊問題中的應用作者 卜凡初中數學中,有關摺疊的問題也是相對比較難的問題,主要涉及求角的度數、求線段的長度、求周長、面積等,其中求線段的長度的問題必然用到勾股定理,而這也正是孩子們感覺到困難的地方,不知道藉助哪個直角三角形運用勾股定理解決。下面藉助例題和大家介紹這類題型的解題思路和方法。
  • 初二專題:如何巧記勾股數?你對勾股定理綜合題真的都會麼?
    同學們好,今天要分享的是初二下學期第二章內容,勾股定理。勾股定理這章節的內容不難。主要就勾股定理,勾股逆定理,和勾股數,以及它的綜合應用。難點在於勾股定理和其他知識點結合的綜合應用題。綜合題是需要同學們對初二上學期學的三角形那章節的內容要比較熟悉,且能熟悉小編之前分享的幾個模型。這樣才能把綜合題做好。
  • 衡中老師:初中數學勾股定理練習題(附答案),建議初中生列印
    衡中老師:初中數學勾股定理練習題(附答案),建議初中生列印在初中階段,數學也算是難點科目了。其中在初中階段,很多同學都會在勾股定理中丟分,勾股定理也是初中數學的基礎知識,但是隨著數學難度加深,混合了其他知識一起考的話,也算是難點了。
  • 《勾股定理》教學設計
    《勾股定理》教學設計一、教學目標【知識與技能】了解勾股定理的不同證明方法,理解勾股定理內容並能夠應用公式解決實際問題。【過程與方法】通過小組合作學習探究數學定理的證明過程,在過程中了解數學中的數形結合思想。
  • 初中數學專題1:勾股定理經典例題詳解,基本用法的舉一反三
    從新學期本篇開始,我們將對初中數學的重點專題知識點逐一開展講解和分析,並且附上例題和解題講解,感興趣的家長和同學們可以持續關注!本篇是初中數學的勾股定理的基本用法,附上了四道經典例題作為講解,希望同學們可以舉一反三哦!勾股定理是初中數學一個非常基本的幾何定理,它的定義主要是描述直角三角形的三條邊的關係的:直角三角形的兩條直角邊的平方和等於斜邊的平方。
  • 科普:勾股定理為什麼叫勾股定理?
    勾三股四弦五,小學就會學到的勾股定理,看起來好像很簡單。但其實大道至簡,簡潔中往往蘊含著一種美,而這種美來自於更深層次的自然的哲理,也就是所謂的道。中國最早記錄關於勾股定理相關內容的史籍是《周髀算經》。此書中將大量的關於數學的樸素的思考,以周公和商高的對話的形式展現出來。
  • 初二上學期,勾股定理的運算,注意分情況討論
    很多同學可能覺得勾股定理放在計算天天練系列中有點突兀,因為勾股定理基本上是以幾何為主,但是很多幾何題也不僅僅只有證明,更多的是將證明與計算相結合。比如勾股定理,證明主要體現在勾股逆定理上,但是也是通過計算得到的。並且,勾股定理是現階段我們常用來計算線段長的方法。
  • 誰是第一個發現勾股定理的人? 勾股定理是怎樣推導出來的?
    誰是第一個發現勾股定理的人? 勾股定理是怎樣推導出來的?時間:2016-04-13 20:13   來源:川北在線整理   責任編輯:沫朵 川北在線核心提示:原標題:誰是第一個發現勾股定理的人? 勾股定理是怎樣推導出來的?
  • 八年級數學,勾股定理,這個題型通俗又易考!
    勾股定理在初中數學的地位是不可撼動的。它揭示了直角三角形三邊之間的數量關係,同時也是「數形結合」思想的一個重要考點。所以在學習這個單元的知識之前,一定要先預習一遍課本的知識,並且在課後能花一定時間進行練習鞏固。值得注意的是勾股定理通常會結合勾股定理逆定理一併考察!
  • 二次根式及勾股定理練習題總結
    二次根式及勾股定理練習題總結1.請在實數範圍內分解因式:2.如果當成立時,x的取值範圍為
  • 初二數學:勾股定理應會知識點,必須掌握!
    基本定義 勾:直角三角形較短的直角邊 股:直角三角形較長的直角邊 弦:斜邊 勾股定理
  • 勾股定理有哪些主要內容?一張勾股定理的思維導圖讓你一目了然
    在北師大版的教材中,勾股定理安排在了八年級數學上冊的第一章進行學習,主要的內容可以分為「勾股定理」、「勾股定理的逆定理」及「勾股定理的應用」三個部分,接下來我們結合教材的小節部分來看看勾股定理需要掌握哪些知識點。
  • 勾股定理的由來
  • 八年級上:中線定理與廣勾股定理
    前兩期內容我們分別講了勾股定理的證明,以及廣勾股定理的證明,不知道同學們是否還有印象呢?已經忘記了的同學們趕緊戳戳最下方的連結。
  • 中考數學,「勾股定理」必考點
    勾股定理的由來:勾股定理也叫商高定理,在西方稱為畢達哥拉斯定理.我國古代把直角三角形中較短的直角邊稱為勾,較長的直角邊稱為股,斜邊稱為弦.早在三千多年前,周朝數學家商高就提出了「勾三,股四,弦五」形式的勾股定理,後來人們進一步發現並證明了直角三角形的三邊關係為
  • 勾股定理的365種證明
    勾股定理是初等幾何的著名定理之一. 它的內容為「直角三角形兩直角邊上正方形面積之和等於斜邊上正方形的面積」. 即「如果直角三角形兩直角邊長度分別為a 和 b, 斜邊長度為 c, 那麼 a²+ b²= c²」.這個定理的內容簡潔優美, 證明方法也是五花八門, 各式各樣.
  • 初中數學三角形中線計算題,勾股定理巧列方程,有人卻不以為然
    一道初二計算題,很簡單的題目,只有三句話題目中已知三角形三邊長度,求一條中線的長度,這種題型在平時的練習題中很少見,課本上也從未出現過類似題目。我們需要認真分析題目的已知條件,三邊長度,我們通過勾股定理可以列方程求解面積,但此題的中線和面積關係不大。
  • 初中數學:《勾股定理》典型例題分析講解!考試必考,務必收藏好
    初中數學:《勾股定理》典型例題分析講解!考試必考,務必收藏好「勾股定理」是初中數學當中非常重要的一項內容,是幾何、函數等內容的分支,串聯著這些考點內容,因此想要學好勾股定理,肯定還是要多花一些心思的。其實,勾股定理本身的定義不難理解,直角三角形兩條直角邊的平方和等於斜邊的平方,相信很多同學都知道這個公式。可是在考試當中,肯定不會是這麼簡單的,前面也給大家提到過,中考數學是會將勾股定理和函數、幾何等內容一起合併考察,所以除了基本的公式定理要熟悉以外,相應的練習題訓練肯定不能少,只有這樣才能真正學好這部分內容。
  • 勾股定理就是勾三股四弦五?你真的了解勾股定理的前世今生嗎?
    我們現在所熟知的勾股定理,早在公元前11世紀,就已經由周朝數學家商高提出了「勾三、股四、弦五」的說法,因而我們又稱勾股定理為「商高定理」。迄今為止,經過漫長歲月的沉澱,勾股定理現已經出現了大約500餘種證明方法,也是數學定理中證明方法最多、證明思路最全的定理之一。
  • 勾股定理的幾種簡單應用
    一、勾股定理在網格中的應用例1已知正方形的邊長為1,(1)如圖a,可以計算出正方形的對角線長為根號2.①分別求出圖(b),(c),(d)中對角線的長_.分析:藉助於網格,構造直角三角形,直接利用勾股定理.二、勾般定理在最短距離中的應用例2 如圖,已知C是SB的中點,圓錐的母線長為10cm,側面展開圖是一個半圓,A處有一隻蝸牛想吃到C處的食物,它只能沿圓錐曲面爬行.請你求出蝸牛爬行的最短路程.