鋰離子電池新型負極材料的改進與研究

2020-11-25 電子產品世界

  本文著重介紹了鋰離子電池負極材料金屬基(Sn基材料、Si基材料)、鈦酸鋰、碳材料(碳納米管石墨烯等)的性能、優缺點及改進方法,並對這些負極材料的應用作了進一步展望。

本文引用地址:http://www.eepw.com.cn/article/201710/365468.htm

  鋰離子電池因具有能量密度高、工作電壓高、循環壽命長、自放電小及環境友好等顯著優點,已被廣泛用於3C電子產品(Computer,ConsumerElectronic和CommunicaTIon)、儲能設備、電動汽車及船用領域。

  鋰離子電池的能量密度(170Wh/kg),約為傳統鉛酸蓄電池的3~4倍,使其在動力電源領域具有較強的吸引力。

  而負極材料的能量密度是影響鋰離子電池能量密度的主要因素之一,可見負極材料在鋰離子電池化學體系中起著至關重要的作用,其中研究較為廣泛的鋰離子電池負極材料為金屬基(Sn基材料、Si基材料)、鈦酸鋰、碳材料(碳納米管石墨烯等)等負極材料。

  金屬基材料

  1.1錫基材料

  目前錫基負極材料主要有錫氧化物和錫合金等。

  1.1.1錫氧化物

  SnO2因具有較高的理論比容量(781mAh/g)而備受關注,然而,其在應用過程中也存在一些問題:首次不可逆容量大、嵌鋰時會存在較大的體積效應(體積膨脹250%~300%)、循環過程中容易團聚等。

  研究表明,通過製備複合材料,可以有效抑制SnO2顆粒的團聚,同時還能緩解嵌鋰時的體積效應,提高SnO2的電化學穩定性。

  Zhou等通過化學沉積和高溫燒結法製備SnO2/石墨複合材料,其在100mA/g的電流密度下,比容量可達450mAh/g以上,在2400mA/g電流密度下,可逆比容量超過230mAh/g,

  實驗表明,石墨作為載體,不僅能將SnO2顆粒分散得更均勻,而且能有效抑制顆粒團聚,提高材料的循環穩定性。

  1.1.2錫合金

  SnCoC是Sn合金負極材料中商業化較成功的一類材料,其將Sn、Co、C三種元素在原子水平上均勻混合,並非晶化處理而得,該材料能有效抑制充放電過程中電極材料的體積變化,提高循環壽命。

  如2011年,日本SONY公司宣布採用Sn系非晶化材料作容量為3.5AH的18650圓柱電池的負極。單質錫的理論比容量為994mAh/g,能與其他金屬Li、Si、Co等形成金屬間化合物。

  如Xue等先採用無電電鍍法製備了三維多孔結構的Cu薄膜載體,然後通過表面電沉積在Cu薄膜載體表面負載Sn-Co合金,從而製備了三維多孔結構的Sn-Co合金。

  該材料的首次放電比容量為636.3mAh/g,首次庫倫效率達到83.1%,70次充放電循環後比容量仍可達到511.0mAh/g。

  Wang等以石墨為分散劑,SnO/SiO和金屬鋰的混合物為反應物,採用高能機械球磨法並經後期熱處理,製備了石墨基質中均勻分散的Sn/Si合金,該材料在200次充放電循環後,其可逆容量仍可達574.1mAh/g,性能優於單獨的SnO或SiO等負極材料。

  1.2矽基材料

  矽作為鋰離子電池理想的負極材料,具有如下優點:矽可與鋰形成Li4.4Si合金,理論儲鋰比容量高達4200mAh/g(超過石墨比容量的10倍);矽的嵌鋰電位(0.5V)略高於石墨,在充電時難以形成「鋰枝晶」;矽與電解液反應活性低,不會發生有機溶劑的共嵌入現象。

  然而,矽電極在充放電過程中會發生循環性能下降和容量衰減,主要有兩大原因:矽與鋰生成Li4.4Si合金時,體積膨脹高達320%,巨大的體積變化易導致活性物質從集流體中脫落,從而降低與集流體間的電接觸,石墨邦,國內首家碳石墨全產業鏈電商平臺----www.shimobang.cn欲交流請加微信號:shimobang造成電極循環性能迅速下降;電解液中的LiPF6分解產生的微量HF會腐蝕矽,造成了矽電極容量衰減。

  為了提高矽電極的電化學性能,通常有如下途徑:製備矽納米材料、合金材料和複合材料。

  如Ge等採用化學刻蝕法製備了硼摻雜的矽納米線,在2A/g充放電電流下,循環250周後容量仍可達到2000mAh/g,表現出優異的電化學性能,歸因於矽納米線的鋰脫嵌機制能有效緩解循環過程中的體積膨脹。

  Liu等通過高能球磨法製備了Si-NiSi-Ni複合物,然後利用HNO3溶解複合物中的Ni單質,得到了多孔結構的Si-NiSi複合物。

  通過XRD表徵可知,體系中存在NiSi合金,其不僅為負極材料提供了可逆容量,還與粒子內部的孔隙協同,緩衝矽在充放電循環過程中的體積膨脹,提高矽電極的循環性能。

  Lee等採用酚醛樹脂為碳源,在氬氣氣氛下於700℃高溫裂解,製備了核殼型Si/C複合材料,經過10次循環後複合物的可逆容量仍可達1029mAh/g,表明採用Na2CO3在矽表面與酚醛樹脂間形成共價鍵,然後進行高溫裂解,可改善矽與裂解碳間的接觸,從而提高負極材料的循環性、減小不可逆容量損失。

  鈦酸鋰

  尖晶石型鈦酸鋰被作為一種備受關注的負極材料,因具有如下優點:

  1)鈦酸鋰在脫嵌鋰前後幾乎「零應變(脫嵌鋰前後晶胞參數」a從0.836nm僅變為0.837nm);

  2)嵌鋰電位較高(1.55V),避免「鋰枝晶」產生,安全性較高;

  3)具有很平坦的電壓平臺;

  4)化學擴散係數和庫倫效率高。

  鈦酸鋰的諸多優點決定了其具有優異的循環性能和較高的安全性,然而,其導電性不高、大電流充放電時容量衰減嚴重,通常採用表面改性或摻雜來提高其電導率。

  如肖等以Mg(NO3)2為鎂源,通過固相法製備了Mg2+摻雜的鈦酸鋰,表明摻雜Mg2+並沒有破壞鈦酸鋰的尖晶石晶體結構,且摻雜後材料的分散性更佳,其在10C放電倍率下的比容量可達到83.8mAh/g,是未摻雜材料的2.2倍,且經過10次充放電循環後容量無明顯衰減,經交流阻抗測試表明,摻雜後材料的電荷轉移電阻明顯降低。

  Zheng等通過高溫固相法,分別採用Li2CO3和檸檬酸鋰作為鋰源,製備了純相的鈦酸鋰和碳包覆的鈦酸鋰,

  實驗表明,經碳包覆的鈦酸鋰具有較小的粒徑和良好的分散性,表現出更優的電化學性能,主要歸因於碳包覆提高了鈦酸鋰顆粒表面的電子電導率,同時較小的粒徑縮短了Li+的擴散路徑。

  碳材料

  3.1碳納米管

  碳納米管是一種石墨化結構的碳材料,自身具有優良的導電性能,同時由於其脫嵌鋰時深度小、行程短,作為負極材料在大倍率充放電時極化作用較小,可提高電池的大倍率充放電性能。

  然而,碳納米管直接作為鋰離子電池負極材料時,會存在不可逆容量高、電壓滯後及放電平臺不明顯等問題。

  如Ng等採用簡單的過濾製備了單壁碳納米管,將其直接作為負極材料,其首次放電容量為1700mAh/g,可逆容量僅為400mAh/g。

  碳納米管在負極中的另一個應用是與其他負極材料(石墨類、鈦酸鋰、錫基、矽基等)複合,利用其獨特的中空結構、高導電性及大比表面積等優點作為載體改善其他負極材料的電性能。

  如郭等採用化學氣相沉積法,在膨脹石墨的孔洞中原位生長碳納米管,合成了膨脹石墨/碳納米管複合材料,其首次可逆容量為443mAh/g,以1C倍率充放電循環50次後,可逆容量仍可達到259mAh/g。

  碳納米管的中空結構及膨脹石墨的孔洞,提供了大量的鋰活性位,而且這種結構能緩衝材料在充放電過程中產生的體積效應。

  3.2石墨烯

  2004年英國Manchester大學研究者首次發現石墨烯材料,並獲得諾貝爾獎。

  石墨烯是一種由碳六元環形成的新型碳材料,具有很多優異的性能,如大比表面(約2600m2g-1)、高導熱係數(約5300Wm-1K-1)、高電子導電性(電子遷移率為15000cm2V-1s-1)和良好的機械性能,被作為鋰離子電池材料而備受關注。

  石墨烯直接作為鋰離子電池負極材料時,具有非常可觀的電化學性能。

  Wang等採用水合肼作為還原劑、製備了叢林形貌的石墨烯片,其兼具硬碳和軟碳特性,且在高於0.5V電壓區間,表現出電容器的特性。

  石墨烯負極材料在1C放電倍率下,首次可逆容量為650mAh/g,100次充放電循環後容量仍可達到460mAh/g。

  石墨烯還可作為導電劑,與其他負極材料複合,提高負極材料的電化學性能。

  如Zai等採用超聲分散法製備了Fe3O4/石墨烯複合材料,在200mA/g的電流密度下放電,經過50次循環後,容量為1235mAh/g;在5000和10000mA/g電流密度下放電,經過700次循環後,容量分別能達到450mAh/g和315mAh/g,表現出較高的容量和良好的循環性能。

  前景展望

  近年來,鋰離子電池負極材料朝著高比容量、長循環壽命和低成本方向進展。

  金屬基(錫基、矽基)材料在發揮高容量的同時伴隨著體積變化,由於金屬基合金材料的容量與體積變化成正比,而實際電芯體積不允許發生大的變化(一般小於5%),所以其在實際應用中的容量發揮受到了較大的限制,解決或改善體積變化效應將成為金屬基材料研發的方向。

  鈦酸鋰由於具有體積變化小、循環壽命長和安全性好等顯著優勢,在電動汽車等大型儲能領域有較大的發展潛力,由於其能量密度較低,與高電壓正極材料LiMn1.5Ni0.5O4匹配使用,是未來高安全動力電池的發展方向。

  碳納米材料(碳納米管和石墨烯)具有比表面積、高的導電性、化學穩定性等優點,在新型鋰離子電池中具有潛在的應用。然而,碳納米材料單獨作為負極材料存在不可逆容量高、電壓滯後等缺點,與其他負極材料複合使用是目前比較實際的選擇。

相關焦點

  • Nature重磅:新型鋰離子電池快充負極材料
    然而當前廣泛採用的鋰離子電池負極材料並未完善,導致快充電池必須在能量密度和安全性能上有所取捨。近日,加州大學聖地牙哥分校Ping Liu(劉平)與Shyue Ping Ong(王學彬)教授團隊,加州大學歐文分校Huolin Xin(忻獲麟)教授,阿貢國家實驗室Jun Lu(陸俊)研究員等多個團隊合作(共同通訊作者),報導了一種新型的具有無序巖鹽結構的氧化物作為鋰離子電池的快充負極材料。
  • 鋰離子電池負極衰減的主要機理
    本文總結了電池使用過程中負極衰減的主要原理,並提出了幾種減少容量衰減的方法。 電池容量衰減的機理已被廣泛研究和報導過。電池容量衰減的影響因素主要有:主要因素是電極表面副反應引起的可循環鋰量的減少;次要因素是活性物質的減少(如金屬的溶出、結構的破壞、材料的相變等);電池阻抗的增加。而負極與上述衰減機理中的許多影響因素均有關係。
  • 寧波材料所在高性能鋰離子電池負極材料領域取得系列進展
    鋰離子電池與鉛酸、鎳鎘、鎳氫等電池相比,由於其較高的能量密度、較長的使用壽命、較小的體積、無記憶效應等特點,成為現今能源領域研究的熱點之一。  負極材料是鋰離子電池的關鍵組件之一,其作為鋰離子的受體,在充放電過程中實現鋰離子的嵌入和脫出。因此,負極材料的好壞直接影響鋰離子電池的整體性能。
  • 大連理工大學在鋰離子電池負極材料研究取得重要成果
    央廣網大連12月1日消息(記者張四清 賈鐵生 通訊員呂東光)近日,大連理工大學材料科學與工程學院黃昊教授的能源材料及器件實驗室在影響因子高達11.553的國際能源領域頂級期刊《Nano Energy》上,發表以「Fe3N constrained inside C nanocages as an anode for Li-ion batteries through post-synthesis
  • 鋰離子電池低溫性能差的原因主要方面,負極材料低溫特性的研究及...
    為此,亟需開發出功率密度高、低溫放電性能優異的新型鋰離子啟動電池。鋰離子電池低溫性能受電解液和正負極材料影響。開發低溫鋰離子啟動電池,首先要從電解液和正、負極材料改性入手,以提升鋰離子電池的低溫放電容量、功率密度、循環壽命等性能。 鋰電池低溫性能主要與電解液的低溫導電能力、鋰離子在活性電極材料中的擴散能力、電極界面性質有關。
  • 下一代鋰離子電池負極材料:納米氧化鎢基材料
    【能源人都在看,點擊右上角加'關注'】雖然目前主要使用石墨作為商業化鋰離子電池的負極材料,但是,納米氧化鎢基材料已經躋身成為下一代鋰離子電池負極材料領域研究的熱點。說到動力鋰離子電池,它可是當下能源領域研究的熱點之一。因為,與鉛酸電池、鎳鎘電池、鎳氫電池等電池相比,鋰離子電池具有較小的體積、較高的能量密度、無記憶效應、較長的使用壽命等特點,而且,它還具有環保特性,符合綠色發展理念。同時,也會有很多人想到,鋰離子電池的關鍵組成部分之一——負極材料。
  • 鋰離子電池負極衰減的主要機理和應對方法
    其中,負極是引起電池容量衰減的主要因素。本文總結了電池使用過程中負極衰減的主要原理,並提出了幾種減少容量衰減的方法。 電池容量衰減的機理已被廣泛研究和報導過。電池容量衰減的影響因素主要有:主要因素是電極表面副反應引起的可循環鋰量的減少;次要因素是活性物質的減少(如金屬的溶出、結構的破壞、材料的相變等);電池阻抗的增加。
  • 鋰離子電池矽負極研究取得進展
    隨著移動電子產品、大規模儲能和電動汽車的快速發展,開發高能量密度、高功率密度、長循環壽命、高安全性的鋰離子及後鋰離子電池成為儲能領域的研究熱點和焦點。發展高容量、高倍率、高穩定性的電極材料是實現這一目標的重要途徑。
  • 中日鋰離子電池負極材料市場現狀分析
    矽碳複合負極材料劣勢在於安全性及倍率性能較差的問題,兩相分離的合金化機理難以產生快速的鋰離子遷移通道,在大倍率充放電情況下必然會損失較大容量並且帶來安全隱患。同時Si基合金也存在成本過高問題,納米Si的價格極其昂貴,尤其是尺寸小於50nm的矽,這使得矽碳複合負極材料成本較高,日本一家企業的產品完全成本大概在50$/Kg左右。
  • 2020先進電池材料論壇前瞻⑧:矽碳負極與鋰金屬負極產業化「競賽」
    負極|矽碳|鋰金屬文章來源自:高工鋰電網2020-08-05 09:10:05 閱讀:300 在下一代高比能鋰離子電池開發中,矽碳負極和鋰金屬負極成為業內商業化應用研發的重點對象。現階段商業化石墨負極材料已經接近其理論比容量極限(372mAh/g),而矽理論比容量高達4200mAh/g,這意味著矽基材料商業化前景廣闊。
  • 【乾貨】鋰離子電池矽基負極材料粘結劑的研究進展
    導語綜述了桂基負極材料粘結劑的研究進展。重點論述了羧甲基纖維素鈉(CMC)、聚丙烯酸(PAA)、海藻酸納和導電聚合物等粘結劑在旌基負極材料中的應用。比較了不同類型粘結劑的優缺點,展望了矽基負極材料粘結劑的發展方向。矽(Si)基負極材料的理論比容量(4 200 mAh/g)高、嵌脫鋰平臺較適宜,是一種理想的鋰離子電池用高容量負極材料[1-2]。
  • SnO2作為鋰離子電池負極材料的研究進展
    鋰離子電池具有比能量高、循環壽命長、無記憶效應、工作溫度範圍寬、環境友好等諸多優點[1],已成功地成為可攜式電子設備的主要動力源。同樣在載運工具領域有著廣闊的應用前景和研究價值。負極材料是鋰離子電池的核心材料之一[2-3],負極材料的優化對提高鋰離子電池的總體性能有著較大作用。SnO2由於具有較高的理論容量,儲量豐富,被認為是最有前景的負極材料之一。
  • 新型電池負極材料石墨二炔 提升電池效率和穩定性
    蓋世汽車訊 鋰離子電池通常採用石墨類碳材作為負極材料。據外媒報導,科學家們研究新型二維碳網狀物,即碳納米纖維膜石墨二炔,在電池應用中的適用性。石墨二炔和石墨烯(石墨烯是單原子層石墨)一樣又平又薄,但是孔隙率更高,而且可以調整電子性能。據研究人員介紹,利用特製前體分子,採用簡單的自下而上的合成方法,可以製備這種材料。
  • 鋰離子電池材料的現狀和未來發展趨勢(負極篇)
    上一篇給大家分享了鋰離子電池正極材料的現狀以及未來可能的方向,篇幅有限,今天就接著給大家帶來負極材料的發展現狀和未來趨勢。【解析鋰離子正負極材料的現在和未來——正極篇】我們知道,無論從成本,壽命,能量密度,安全性來說負極對於鋰離子電池來說也是至關重要的。
  • 技術|SnO2作為鋰離子電池負極材料的研究進展
    【能源人都在看,點擊右上角加'關注'】導讀本文綜述了從零維到三維納米結構SnO2及與碳材料和金屬氧化物複合材料的研究進展,並對其應用前景做出了展望。鋰離子電池具有比能量高、循環壽命長、無記憶效應、工作溫度範圍寬、環境友好等諸多優點[1],已成功地成為可攜式電子設備的主要動力源。同樣在載運工具領域有著廣闊的應用前景和研究價值。
  • 詳細分析鋰離子電池的電極材料選擇
    目前,國際上鋰離子電池的生產地主要集中在中國、日本和韓國,主要的鋰離子應用市場為手機和電腦。隨著鋰離子電池的不斷發展,應用領域也在逐漸的擴大,其在正極材料的使用方面已經由單一化向多元化的方向轉變,其中包括:橄欖石型磷酸亞鐵鋰、層狀鈷酸鋰、尖晶石型錳酸鋰等等,實現多種材料的並存。 從技術發展方面能夠看出,在日後的發展中還會產生更多新型的正極材料。
  • 乾貨| 鋰離子動力電池及其關鍵材料的發展趨勢
    開發高電壓、高容量的正極新材料成為動力鋰離子電池比能量大幅度提升的主要途徑; 負極材料將繼續朝低成本、高比能量、高安全性的方向發展, 矽基負極材料將全面替代其他負極材料成為行業共識. 此外, 本文還對鋰離子動力電池正極、負極材料等的選擇及匹配技術、動力電池安全性、電池製造工藝等的關鍵技術進行了簡要分析, 並提出了鋰離子動力電池研究中應予以關注的基礎科學問題.
  • 石墨化碳包覆SnOxSiO2的納米電纜結構應用於高性能自支撐鋰離子電池負極材料
    隨著可攜式電子設備和電動汽車的廣泛應用和快速發展,開發具有高能量密度、高功率密度和長循環壽命的鋰離子電池變的越來越迫切。
  • Advanced Energy Materials:高性能鋰離子/鈉離子電池磷基負極材料最新研究進展及展望
  • 解析鋰離子電池正負極材料的現在和未來——負極篇
    上一篇給大家分享了鋰離子電池正極材料的現狀以及未來可能的方向,篇幅有限,今天就接著給大家帶來負極材料的發展現狀和未來趨勢。【解析鋰離子正負極材料的現在和未來——正極篇】我們知道,無論從成本,壽命,能量密度,安全性來說負極對於鋰離子電池來說也是至關重要的。早期的鋰離子電池負極是使用鋰金屬負極的但是為什麼後來不用了呢?