運動學習通過少突膠質細胞促進髓鞘再生
作者:
小柯機器人發布時間:2020/5/20 12:33:05
近日,美國科羅拉多大學醫學院Ethan G. Hughes及其研究小組發現,運動學習通過新生的和存活的少突膠質細胞促進髓鞘再生。2020年5月18日,《自然—神經科學》在線發表了這項成果。
研究人員發現,雖然學習前肢伸展任務會瞬時抑制少突膠質生成,但隨後會增加少突膠質前體細胞的分化、少突膠質細胞的生成以及前肢運動皮層中髓鞘的重塑。脫髓鞘後,神經元立即表現出過度興奮性,學習受到損害,並且行為幹預對髓鞘再生沒有益處。但是,部分髓鞘再生可恢復神經元和行為功能,從而可以通過學習來增強少突膠質生成、裸露的軸突的髓鞘再生成以及倖存的少突膠質細胞產生新髓鞘的能力。
雖然在以前是有爭議的,研究人員表明成熟的少突膠質細胞不僅可以生成髓鞘,而且在脫髓鞘後還可以增加髓鞘的保護,從而為治療提供了新的靶點。總之,這些發現表明,精確定時的運動學習可通過增強新生的以及存活的少突膠質細胞的髓鞘再生來改善脫髓鞘損傷的恢復。
據悉,神經疾病中少突膠質細胞的喪失使軸突容易受到損害和變性,而活動依賴性的髓鞘形成可能是一種改善損傷後髓鞘形成的內在機制。
附:英文原文
Title: Motor learning promotes remyelination via new and surviving oligodendrocytes
Author: Clara M. Bacmeister, Helena J. Barr, Crystal R. McClain, Michael A. Thornton, Dailey Nettles, Cristin G. Welle, Ethan G. Hughes
Issue&Volume: 2020-05-18
Abstract: Oligodendrocyte loss in neurological disease leaves axons vulnerable to damage and degeneration, and activity-dependent myelination may represent an endogenous mechanism to improve remyelination following injury. Here we report that, while learning a forelimb reach task transiently suppresses oligodendrogenesis, it subsequently increases oligodendrocyte precursor cell differentiation, oligodendrocyte generation and myelin sheath remodeling in the forelimb motor cortex. Immediately following demyelination, neurons exhibit hyperexcitability, learning is impaired and behavioral intervention provides no benefit to remyelination. However, partial remyelination restores neuronal and behavioral function, allowing learning to enhance oligodendrogenesis, remyelination of denuded axons and the ability of surviving oligodendrocytes to generate new myelin sheaths. Previously considered controversial, we show that sheath generation by mature oligodendrocytes is not only possible but also increases myelin pattern preservation following demyelination, thus presenting a new target for therapeutic interventions. Together, our findings demonstrate that precisely timed motor learning improves recovery from demyelinating injury via enhanced remyelination from new and surviving oligodendrocytes.
DOI: 10.1038/s41593-020-0637-3
Source: https://www.nature.com/articles/s41593-020-0637-3