單分子成像揭示成體細胞幹細胞的轉錄動力學
作者:
小柯機器人發布時間:2020/6/28 10:38:20
美國阿爾伯特·愛因斯坦醫學院Ulrich Steidl團隊的一項最新研究利用單分子成像揭示了成體幹細胞的轉錄動力學。相關論文於2020年6月24日在線發表於《自然》雜誌。
使用單分子RNA螢光原位雜交(smFISH)研究人員對源自小鼠造血組織的幹細胞進行了探究,以測量編碼轉錄因子的三個關鍵基因的轉錄動力學:PU.1(也稱為Spi1)、Gata1和Gata2。研究發現低頻、隨機的突發導致大多數造血幹細胞和祖細胞中這些拮抗轉錄因子的共表達。
此外,通過將smFISH與延時顯微鏡配對以及譜系聯合應用分析,研究人員發現,儘管單個幹細胞克隆產生的子細胞處於轉錄相關狀態(類似於轉錄啟動現象),但通過隨機和可逆模型,研究人員發現狀態之間的潛在過渡動力學卻能得到最佳捕獲。這樣,隨機過程可能會產生細胞行為,該行為可能被錯誤地推斷為是由確定性動力學引起的。研究人員提出了一個模型,其中基因表達的內在隨機性促進而不是阻礙了轉錄可塑性和幹細胞乾性的維持。
據悉,分子噪聲是所有生物系統固有的自然現象。尚不清楚隨機過程是如何產生和維持組織動態的平衡。
附:英文原文
Title: Single-molecule imaging of transcription dynamics in somatic stem cells
Author: Justin C. Wheat, Yehonatan Sella, Michael Willcockson, Arthur I. Skoultchi, Aviv Bergman, Robert H. Singer, Ulrich Steidl
Issue&Volume: 2020-06-24
Abstract: Molecular noise is a natural phenomenon that is inherent to all biological systems1,2. How stochastic processes give rise to the robust outcomes that support tissue homeostasis remains unclear. Here we use single-molecule RNA fluorescent in situ hybridization (smFISH) on mouse stem cells derived from haematopoietic tissue to measure the transcription dynamics of three key genes that encode transcription factors: PU.1 (also known as Spi1), Gata1 and Gata2. We find that infrequent, stochastic bursts of transcription result in the co-expression of these antagonistic transcription factors in the majority of haematopoietic stem and progenitor cells. Moreover, by pairing smFISH with time-lapse microscopy and the analysis of pedigrees, we find that although individual stem-cell clones produce descendants that are in transcriptionally related states—akin to a transcriptional priming phenomenon—the underlying transition dynamics between states are best captured by stochastic and reversible models. As such, a stochastic process can produce cellular behaviours that may be incorrectly inferred to have arisen from deterministic dynamics. We propose a model whereby the intrinsic stochasticity of gene expression facilitates, rather than impedes, the concomitant maintenance of transcriptional plasticity and stem cell robustness.
DOI: 10.1038/s41586-020-2432-4
Source: https://www.nature.com/articles/s41586-020-2432-4